Biodecolorization of Synthetic Dyeing Wastewater by Immobilized Halotolerant Cells

Article Preview

Abstract:

The high concentration of salt in textile dye wastewater is one of the limiting factors for evaluating an effective biodecolorization system. Thirty-nine strains of salt-tolerant bacteria were screened for their ability to decolorize azo dyes (cationic blue 41) in the presence of 10% NaCl (w/v). Among them, C15-3 was the most effective strain for decolorizing synthetic dye wastewater. Due to the advantages in the use of immobilized cells over other textile wastewater treatments, the entrapment procedure was selected as it generated preferable conditions for dye decolorization. The ratio suitable for the whole cell entrapment technique was 1% (w/v) alginate and 2.5% (w/v) gelatin. In decolorization batching, the immobilized cells were advantaged over free cells for dye removal over a range of pH and temperatures. Synthetic dye wastewater was decolorized by the immobilized cells in the pH 4.0-10.0 range (pH 4.0-8.0 for whole cell system). The immobilized beads were more effective in the removal of synthetic dye at 50°C (optimal temperature) when compared to free cells (optimally at 40°C). Tests revealed that the decolorization products were less phytotoxic when compared to undecolorized azo dye. Immobilized cells were reusable in 4 cycles at pH 7.2 and 37°C, indicating that the addition of immobilized halotolerant cells may be a suitable treatment for industrial effluents in the breakdown of azo dyes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-242

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Yan, C. Du, M. Xu, Liao, W. Liao, Decolorization of azo dyes by a salt-tolerant Staphylococcus cohnii strain isolated from textile wastewater, Front. Environ. Sci. Eng. China. 6(6) (2012) 806-814.

DOI: 10.1007/s11783-012-0453-4

Google Scholar

[2] G. Liu, J. Zhou, Q. Ji, J. Wang, R. Jin, H. Lv, Accelerated removal of Sudan dye by Shewanella oneidensis MR-1 in the presence of quinones and humic acids, World J. Microbiol. Biotechnol. 29(9) (2013) 1723-1730.

DOI: 10.1007/s11274-013-1336-y

Google Scholar

[3] R. G. Saratale, G. D. Saratale, J. S. Chang, S. P. Govindwar, Bacterial decolorization and degradation of azo dyes: a review, J. Taiwan. Int. Chem. Eng., 42(1) (2011) 138-157.

DOI: 10.1016/j.jtice.2010.06.006

Google Scholar

[4] R. P. Singh, P. K. Singh, R. L. Singh, Bacterial Decolorization of Textile Azo Dye Acid Orange by Staphylococcus hominis RMLRT03, Toxicol. Int., 21(2) (2014) 160-166.

DOI: 10.4103/0971-6580.139797

Google Scholar

[5] S. Moreira, A. M. F. Milarges, I. M. Solange, Reactive dyes and textile effluent decolorization by a mediator system of salt-tolerant laccase from Peniophora cinerea, Sep. Purif. Technol. 135 (2014) 183-189.

DOI: 10.1016/j.seppur.2014.08.017

Google Scholar

[6] C. J. Ogugbue, T. Sawidis, N. A. Oranusi, Evaluation of colour removal in synthetic saline wastewater containing azo dyes using an immobilized halotolerant cell system, Ecol. Eng., 37(12) (2010) 2056-(2060).

DOI: 10.1016/j.ecoleng.2011.09.003

Google Scholar

[7] EPA, Profile of the textile industry. Environmental Protection Agency, Washington, DC. (1997).

Google Scholar

[8] M. A. Amoozegar, M. Hajighaseme, J. Hamedi, S. Asad, A. Ventosa, Azo dye decolorization by halophilic and halotolerant microorganisms, Ann. Microbiol., 61 (2010) 217-230.

DOI: 10.1007/s13213-010-0144-y

Google Scholar

[9] S. Namwong, K. Hiraga, K. Takada, K. Tsunemi, S. Tanasupawat, K. Oda, A halophilic serine proteinase from Halobacillus sp. SR5-3 isolated from fish sauce: purification and characterization, Biosci. Biotechnol. Biochem., 70(6) (2006) 1395-1401.

DOI: 10.1271/bbb.50658

Google Scholar

[10] S. Namwong, S. Tanasupawat, W. Visessanguan, T. Kudo, T. Itoh, Haloarcula salaria sp. nov. and Haloarcula tradensis sp. nov. from salt in fish sauce, Int. J. Syst. Evol. Microbiol. 61 (2011) 231-236.

DOI: 10.1099/ijs.0.021790-0

Google Scholar

[11] S. Namwong, S. Tanasupawat, Identification of Staphylococcus strain CH1-8 and its oil-degradation, J. App. Phar. Sci., 4(11) (2014) 24-29.

Google Scholar

[12] E. Franciscon, M. J. Crossman, J. A. Rizzato Paschoal, F. G. Reyes Reyes, L. D. Durrant, Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15, SpringerPlus, 1(1) (2012) 37.

DOI: 10.1186/2193-1801-1-37

Google Scholar

[13] L. G. Harris, S. J. Foster, R. G. Richards, An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review, Eur Cell Mater. 4(2002) 39-60.

DOI: 10.22203/ecm.v004a04

Google Scholar

[14] A. Khalid, M. Arshad, D. E. Crowley, Decolorization of azo dyes by Shewanella sp. under saline conditions, Appl. Microbiol. Biotechnol. 79(6) (2008) 1053-1059.

DOI: 10.1007/s00253-008-1498-y

Google Scholar

[15] L. Kumari, A. K. Verma, D. Tiwary, D. D. Giri, G. Nath, P. K. Mishra, Biodegradation of Navy N5RL1 carpet dye by Staphylococcus saprophyticus strain BHUSSX3. 3, Biotechnol. 5(5) (2015) 775-782.

DOI: 10.1007/s13205-015-0276-7

Google Scholar

[16] M. Mehdi, N. K. Nasser, B. K. Maryam, N. V. Nastaran, B. Ghodsieh, A. F. Mohammad, Immobilization of Laccase in Alginate-Gelatin Mixed Gel and Decolorization of Synthetic Dyes, Bioinor Chem. Appl. (2012) 1-7.

Google Scholar

[17] A. A. Prasad, K. B. Rao, Aerobic biodegradation of azo dye Acid Black-24 by Bacillus halodurans, J. Environ. Biol. 35(3) (2014) 549-554.

Google Scholar

[18] R. G. Saratale, G. D. Saratale, J. S. Chang, S. P. Govindwar, Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium, Biodegradation. 21(6) (2010) 999-1015.

DOI: 10.1007/s10532-010-9360-1

Google Scholar

[19] X. Meng, G. Liu, J. Zhou, Q. Shiang, Fu, G, Wang, Azo dye decolorization by Shewanella aquimarina under saline conditions, Bioresour. Technol. 114 (2012) 95-101.

DOI: 10.1016/j.biortech.2012.03.003

Google Scholar