Adsorption of Cu(II) onto Cross-Linked Chitosan Coated Bentonite Beads: Kinetic and Isotherm Studies

Article Preview

Abstract:

In this study, cross-linked chitosan coated bentonite (CCB) beads were prepared as a potential adsorbent to adsorb Cu(II) from aqueous solution. As adsorption capacity was affected by several conditions such as initial Cu(II) concentrations, stirring period and temperature, these parameters were important to be investigated. Three different concentrations of Cu(II) were used in the kinetic study, which were 10, 25 and 50 mg/L. The experimental data was found fitted well with the pseudo-second-order model, an indication that chemisorption was the rate controlling mechanism. Isotherm study was done at different temperatures with concentration of Cu(II) was varied from 10 to 200 mg/L. The maximum monolayer adsorption of Cu(II) on CCB beads based on Langmuir isotherm model at 300, 310 and 320 K were 114.94, 119.05 and 77.52 mg/g, respectively. Therefore, adsorption of Cu(II) was preferred at lower temperatures. This work proved CCB beads as an effective adsorbent for fast removal of Cu(II) from wastewater solutions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-248

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. J. Hu, Y. G. Liu, H. Wang. G. M. Zeng, X. Hu, Y. M. Guo, T. T. Li, A. W. Chen, L. H. Jiang, F. Y. Guo, Adsorption of copper by magnetic graphene oxide-supported β-cyclodextrin: Effects of pH, ionic strength, background electrolytes, and citric acid, Chem. Eng. Res. Des. 93 (2015).

DOI: 10.1016/j.cherd.2014.06.002

Google Scholar

[2] M. Prasanthi, M. Jayasravanthi, R. Nadh, Kinetic, isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials, Musa acuminate, Casuarina equisetifolia L. and Sorghum bicolor, Polish J. Chem. Tech. 18(2) (2016).

DOI: 10.1515/pjct-2016-0031

Google Scholar

[3] H. Guolin, Y. Chuo, Z. Kai, S. Jeffrey, Adsorptive removal of copper ions from aqueous solutions using cross-linked magnetic chitosan beads, Chin. J. Chem. Eng. 17(6) (2009) 960-966.

DOI: 10.1016/s1004-9541(08)60303-1

Google Scholar

[4] F. Zhao, E. Repo, Y. Meng, X. Wang, D. Yin, M. Sillanpää, An EDTA-β-cyclodextrin material for adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater, J. Coll. Interf. Sci. 465 (2016) 215-224.

DOI: 10.1016/j.jcis.2015.11.069

Google Scholar

[5] J. Wang, L. Wang, H. Yu, Zain-ul-Abdin, Y. Chen, Q. Chen, W. Zhou, H. Zhang, X. Chen, Recent progress on synthesis, property and application of modified chitosan: An overview, Int. J. Biologic. Macromol. 88 (2016) 333-344.

DOI: 10.1016/j.ijbiomac.2016.04.002

Google Scholar

[6] W. S. Wan Ngah, S. Fatinathan, Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies, J. Environment. Manag. 91(4) (2010) 958-969.

DOI: 10.1016/j.jenvman.2009.12.003

Google Scholar

[7] W. S. Wan Ngah, N. F. Md Ariff, M. A. K. M. Hanafiah, Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions, Water, Air and Soil Pollution. 206(1) (2010).

DOI: 10.1007/s11270-009-0098-5

Google Scholar

[8] W. S. Wan Ngah, N. F. Md Ariff, A. Hashim, M. A. K. M. Hanafiah, Malachite green adsorption onto chitosan coated bentonite Beads: isotherms, kinetics and mechanism, Clean- Soil, Air, Water. 38(4) (2010) 394-400.

DOI: 10.1002/clen.200900251

Google Scholar

[9] Y. S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Protect. 76(4) (1998) 332-340.

DOI: 10.1205/095758298529696

Google Scholar

[10] J. Febrianto, A. K. Natasia, J. Sunarso, Y. H. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies, J. Hazard. Mater. 162(2-3) (2009) 616-645.

DOI: 10.1016/j.jhazmat.2008.06.042

Google Scholar

[11] Y. S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res. 34(3) (2000) 735-742.

DOI: 10.1016/s0043-1354(99)00232-8

Google Scholar

[12] I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Chem. Soc. 38(11) (1916) 2221-2295.

DOI: 10.1021/ja02268a002

Google Scholar

[13] F. Fadzil, S. Ibrahim, M. A. K. M. Hanafiah, Adsorption of lead(II) onto organic acid modified leaf powder: Batch and column studies, Process. Saf. Environ. 100(Ii) (2016) 1-8.

DOI: 10.1016/j.psep.2015.12.001

Google Scholar

[14] A. S. K. Krishna, S. J. Jiang, Chitosan-functionalized graphene oxide : A novel adsorbent an efficient adsorption of arsenic from aqueous solution, J. Environ. Chem. Eng. 4(2) (2016) 1698–1713.

DOI: 10.1016/j.jece.2016.02.035

Google Scholar

[15] S. Rangabhashiyam, N. Anu, M. S. Giri Nangopal, N. Selvaraju, Relevance of isotherm models in biosorption of pollutants by agricultural byproducts, J. Environ. Chem. Eng. 2(1) (2014) 398–414.

DOI: 10.1016/j.jece.2014.01.014

Google Scholar

[16] Y. Zhu, Y. Zheng, A. Wang, A simple approach to fabricate granular adsorbent for adsorption of rare elements, Int. J. Biol. Macromol. 72 (2015) 410-420.

DOI: 10.1016/j.ijbiomac.2014.08.039

Google Scholar

[17] H. M. F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385-470.

Google Scholar

[18] A. A. GAlhoum, M. G. Mahfouz, S. T. Abdel-Rehem, N. A. Gomaa, A. A. Atia, T. Vincent, E. Guibal, Diethylenetriamine-functionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions [Nd(III), Dy(III) and Yb(III)] Cellulose 22(4) (2015).

DOI: 10.1007/s10570-015-0677-0

Google Scholar