[1]
Y. Mazaheri, F. Karimzadeh, M. Enayati, Development of Al356/Al2O3 Nanocomposite Coatings by High Velocity Oxy-fuel Technique, J. Mater. Sci. Tech. 29(9) (2013) 813-820.
DOI: 10.1016/j.jmst.2013.05.019
Google Scholar
[2]
S. J. Jahromi, A. Dehghan, S. Malekjani, Effects of optimum amount of Sr and Sb modifiers on tensile, impact, and fatigue properties of A356 Aluminum alloy, Iranian J. Sci. Tech. 28 (2004) 225-232.
Google Scholar
[3]
S. Sajjadi, M. T. Parizi, H. Ezatpour, A. Sedghi, Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties, J. Alloy. Comp. 511 (2012) 226-231.
DOI: 10.1016/j.jallcom.2011.08.105
Google Scholar
[4]
I. El-Mahallawi, H. Abdelkader, L. Yousef, A. Amer, J. Mayer, A. Schwedt, Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic Alloys, Mater. Sci. Eng. A. 556 (2012).
DOI: 10.1016/j.msea.2012.06.061
Google Scholar
[5]
E. Candan, Effect of Alloying Elements to Aluminium on the Wettability of Al/SiC System, Turkish. J. Eng. Env. Sci. 26 (2002) 1-5.
Google Scholar
[6]
M. K. Surappa, P. Rohatgi, Preparation and properties of cast aluminium-cerarnic particle composites, J. Mater. Sci. 16(4) (1981) 983-993.
DOI: 10.1007/bf00542743
Google Scholar
[7]
T. Rajan, R. Pillai, B. Pai, Review - Reinforcement coatings and interfaces in aluminium metal matrix composites, J. Mater. Sci. 33 (1998) 3491-3503.
Google Scholar
[8]
G. Lin, H. W. Zhang, H. Z. Li, L. N. Guan, L. J. Huang, Effects of Mg content on microstructure and mechanical properties of SiC/Al-Mg composites fabricated by semi-solid stirring technique, Trans. Nonferr. Metal. Soc. China, 20(10) (2010).
DOI: 10.1016/s1003-6326(09)60385-x
Google Scholar
[9]
ASM International, ASM Handbook, in Vol. 4: Heat Treating, (1991).
Google Scholar
[10]
L. Pio, Effect of T6 Heat Treatment on the Mechanical Properties of Gravity Die Cast A356 Aluminium Alloy, J. Appl. Sci. 11 (2011) 2048-(2052).
DOI: 10.3923/jas.2011.2048.2052
Google Scholar
[11]
R. Chen, A. Iwabuchi, T. Shimizu, The effect of a T6 heat treatment on the fretting wear of a SiC particle-reinforced A356 aluminum alloy matrix composite, Wear, 238 (2000) 110-119.
DOI: 10.1016/s0043-1648(99)00328-2
Google Scholar
[12]
S. Pramod, Ravikirana, A. P. Rao, B. Murty, S. R. Bakshi, Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy, Mater. Sci. Eng. A, 674 (2016) 438–450.
DOI: 10.1016/j.msea.2016.08.022
Google Scholar
[13]
K. Sekar, K. Allesu, M. A. Joseph, Effect of T6 heat treatment in the microstructure and mechanical properties of A356 reinforced with nano Al2O3 particles by combination effect of stir and squeeze casting, Proc. Mater. Sci. 5 (2014) 444-453.
DOI: 10.1016/j.mspro.2014.07.287
Google Scholar
[14]
J. Hashim, L. Looney, M. Hashmi, Metal Matrix Composites: production by the stir casting method, J. Mater. 92 (1999) 1-7.
DOI: 10.1016/s0924-0136(99)00118-1
Google Scholar
[15]
M. Surappa, Microstructure Evolution During Solidification of DRMMCs: State of Art, J. Mater. Proc. Tech. 63 (1997) 325-333.
DOI: 10.1016/s0924-0136(96)02643-x
Google Scholar
[16]
J. G. Conley, J. Huang, J. Asada, K. Akiba, Modeling the effects of cooling rate, hydrogen content, grain refiner and modifier on microporosity formation on Al A356 alloys, Mater. Sci. Eng. A, 285 (2000) 49-55.
DOI: 10.1016/s0921-5093(00)00665-1
Google Scholar
[17]
D. Ferdian, J. Lacaze, I. Lizarralde, A. Niklas, A. I. Fernandez-Calvo, Study of the Effect of Cooling Rate on Eutectic Modification in A356 Aluminium Alloys, Mater. Sci. Froum. 765 (2013) (2013).
DOI: 10.4028/www.scientific.net/msf.765.130
Google Scholar
[18]
M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, The role of strontium in modifying aluminium-silicon alloys, Acta Mater. 60 (2012) 3920-3928.
DOI: 10.1016/j.actamat.2012.03.031
Google Scholar
[19]
J. H. Peng, X. L. Tang, J. T. He, D. Y. Xu, Effect of heat treatment on microstructure and tensile properties of A356 alloys, Trans. Nonferr. Metal. Soc. China, 21 (2011) 1950-(1956).
DOI: 10.1016/s1003-6326(11)60955-2
Google Scholar
[20]
E. A. Elsharkawi, Effects of metallurgical parameters on the decomposition of π-AlFeMgSi phase in Al-Si-Mg alloys and its influence on the mechanical properties, Thesis - Universite du Quebec a Chicoutini, (2011).
DOI: 10.1522/030259014
Google Scholar
[21]
A. S. E. Samuel, H. Doty, S. Valtierra and F. Samuel, Intermetallic phases in Al-Si based cast alloys: new persective, (2014).
DOI: 10.1179/1743133613y.0000000083
Google Scholar
[22]
M. A. Elahi, S. G. Shabestari, Effect of various melt and heat treatment conditions on impact toughness of A356 aluminum alloy, Trans. Nonferr. Metal. Soc. China, 26 (2016) 956-965.
DOI: 10.1016/s1003-6326(16)64191-2
Google Scholar
[23]
S. Shivkumar, L. Wang, C. Keller, Impact Properties of A356-T6 Alloys, J. Mater. Eng. Perform. 3 (1994) 83.
Google Scholar
[24]
C. Estey, S. Cockcroft, D. Maijer and C. Hermesmann, Constitutive behaviour of A356 during the quenching operation, Mater. Sci. Eng. A, 383 (2004) 245–251.
DOI: 10.1016/j.msea.2004.06.004
Google Scholar
[25]
H. Long, J. Chen, C. Liu, D. Li, Y. Li, The negative effect of solution treatment on the age hardening of A356 alloy, Mater. Sci. Eng. A, 566 (2013) 112-118.
DOI: 10.1016/j.msea.2012.12.093
Google Scholar