Preparation and Characterization of the Na2Ti3O7: ABS/Na2Ti3O7 Composites

Article Preview

Abstract:

Titanate Ribbon (Na2Ti3O7) used in ABS plastic was synthesized to study the mechanical properties and to conduct test on the E-coli bacteria inhibition performance. The polymer blends of ABS/Na2Ti3O7 by Na2Ti3O7, was synthesized through alkaline hydrothermal reaction with 0.5 grams of titanium dioxide as a precursor with 20 ml. of sodium hydroxide (NaOH) at the concentration of 10 molar under the alkalinity at 200 ° c for 24 hours. The study on the microstructure by scanning electron microscope revealed that the Layered structure was shaped as a complete ribbon. The mechanical testing activities on the E-coli bacteria inhibition polymer mixed ABS/Na2Ti3O7; it was found that the mechanical properties for ABS/Na2Ti3O7, The results showed that tensile modulus and tensile strength of blending Na2Ti3O7 at 0.5 %wt was the highest. The result showed that E.coli could reduce up to 66.01%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-43

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] A. Fujishima, X. Zhang, D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[3] M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 95 (1995) 69.

DOI: 10.1021/cr00033a004

Google Scholar

[4] K. Rajeshwar, Materials aspects of photoelectrochemical energy conversion, J. Appl. Electrochem. 15 (1985) 1.

Google Scholar

[5] K. Rajeshwar, Hydrogen generation at irradiated oxide semiconductor-solution interfaces, J. Appl. Electrochem. 37(7) (2007) 765–787.

DOI: 10.1007/s10800-007-9333-1

Google Scholar

[6] A. M. Handerson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep. 66 (2011) 185.

Google Scholar

[7] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir, 14 (1998) 3160-3163.

DOI: 10.1021/la9713816

Google Scholar

[8] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania nanotubes prepared by chemical processing, Adv. Mater. 11 (1999) 1307-1311.

DOI: 10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h

Google Scholar

[9] Q. Chen, W. Zhou, G. H. Du, L. M. Peng, Trititanate nanotubes made via a single alkali treatment, Adv. Mater. 14 (2002).

DOI: 10.1002/1521-4095(20020903)14:17<1208::aid-adma1208>3.0.co;2-0

Google Scholar

[10] K. Kiatkittipong, J. Scott, R. Amal, Hydrothermally synthesized titanate nanostructures: Impact of heat treatment on particle characteristics and photocatalytic properties, ACS Appl. Mater. Interf. 3 (2011) 3988-3996.

DOI: 10.1021/am2008568

Google Scholar

[11] Z. Y. Yuan, J. F. Colomer, B. L. Su, Titanium oxide nanoribbons, Chem. Phys. Lett. 363 (2002) 362-366.

Google Scholar

[12] K. Kiatkittipong, C. Ye, J. Scott, R. Amal, Understanding Hydrothermal Titanate Nanoribbon Formation, Cryst. Growth & Des. 10 (2010) 3618-3625.

DOI: 10.1021/cg1004984

Google Scholar

[13] Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chem. Phys. Lett. 365 (2002) 300-304.

DOI: 10.1016/s0009-2614(02)01499-9

Google Scholar

[14] R. Yoshida, Y. Suzuki, S. Yoshikawa, Syntheses of TiO2 (B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments, J. Solid State Chem. 178 (2005) 2179-2185.

DOI: 10.1016/j.jssc.2005.04.025

Google Scholar

[15] A. R. Armstrong, G. Armstrong, J. Canales, P. G. Bruce, TiO2 -B nanowires, Angew. Chem. Int. Ed. 43 (2004) 2286-2288.

DOI: 10.1002/anie.200353571

Google Scholar

[16] K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology - A Technology for Crystal Growth and Materials Processing. William Andrew Publishing/Noyes, (2001).

Google Scholar

[17] R. Ma, Y. Bando, T. Sasaki, Nanotubes of lepidocrocite titanates, Chem. Phys. Lett. 380 (2003) 577-582.

DOI: 10.1016/j.cplett.2003.09.069

Google Scholar

[18] G. Centi, S. Perathoner, Catalysis by layered materials: A review, Microp. Mesop. Mater. 107 (2008) 3-15.

Google Scholar

[19] K. I. Shimizu, Y. Tsuji, T. Hatamachi, K. Toda, T. Kodama, M. Sato, et al., Photocatalytic water splitting on hydrated layered perovskite tantalate A2 SrTa2O7 nH2O (A = H, K, and Rb), Phys. Chem. Chem. Phys. 6 (2004) 1064-1069.

DOI: 10.1002/chin.200422022

Google Scholar

[20] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253-278.

DOI: 10.1039/b800489g

Google Scholar

[21] M. Kitano, M. Hara, Heterogeneous photocatalytic cleavage of water, J. Mater. Chem. 20 (2010) 627-641.

DOI: 10.1039/b910180b

Google Scholar

[22] A. Kudo, Photocatalyst materials for water splitting, Catal. Surv. Asia, 7 (2003) 31-38.

Google Scholar

[23] V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy, Silver metallisation of titania particles: Effects on photoactivity for the oxidation of organics, Chem. Eng. J. 98 (2004) 127-139.

DOI: 10.1016/j.cej.2003.05.004

Google Scholar

[24] A. Mirigul, Y. Huseyin, Mechanical and Antibacterial Properties of Injection Molded Polypropylene/TiO2 Nano-Composites: Effects of Surface Modification, J. Mater. Sci. Technol. 28(8) (2012) 686–692.

DOI: 10.1016/s1005-0302(12)60116-9

Google Scholar