Thermal Performance Test and Improvement for Phase Change Material Composite through Nucleating Additive

Article Preview

Abstract:

Solid-liquid phase change material (PCM) is of high phase change heat and application potentials of thermal energy storage. In this paper, the thermal performance of PCM composites of sodium acetate and urea are investigated through experiment. Moreover, the main thermal-physical properties of such PCM composites with different mixing mass ratios are obtained through T-history method. The results show that with the rising urea mass fraction, both the phase change temperature and latent heat of fusion (enthalpy) decline. It also indicates that strontium sulfate is an effective nucleating additive to decrease super-cooling degree during solidification process for such composite PCM. This work is of high significant in improving the thermal performance of PCM composite and extending its applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-49

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Oliver, Thermal characterization of gypsum boards with PCM included: thermal energy storage in buildings through latent heat, Energ. Build. 48 (2012) 1-7.

DOI: 10.1016/j.enbuild.2012.01.026

Google Scholar

[2] B. Zalba, J. M. Marin, L. F. Cabeza, et al., Review on thermal energy storage with phase change materials: heat transfer analysis and applications, Appl. Therm. Engin. 23 (2003) 251-283.

DOI: 10.1016/s1359-4311(02)00192-8

Google Scholar

[3] A. Sharma, V. V. Tyagi, C. R. Chen, et al., Review on thermal energy storage with phase change materials and applications, Renew. Sus. Energ. Rev. 13 (2009) 318-345.

Google Scholar

[4] F. Pitié, C. Y. Zhao, J. Baeyens, et al., Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles. Appl. Energ. 109 (2013) 505-513.

DOI: 10.1016/j.apenergy.2012.12.048

Google Scholar

[5] H. L. Zhang, J. Baeyens, J. Degreve, et al. Latent heat storage with tubular encapsulated phase change materials (PCMs), Energy 76 (2014) 66-72.

DOI: 10.1016/j.energy.2014.03.067

Google Scholar

[6] R. L. Zeng, X. Wang, H. F. Di, et al., New concept and approach for developing energy efficient buildings: ideal specific heat for building internal thermal mass, Energ. Build. 43 (2011) 1081-1090.

DOI: 10.1016/j.enbuild.2010.08.035

Google Scholar

[7] R. Cheng, M. Pomianowski, X. Wang, et al., A new method to determine thermophysical properties of PCM-concrete brick, Appl. Energ. 112 (2014) 988-998.

DOI: 10.1016/j.apenergy.2013.01.046

Google Scholar

[8] Y. P. Zhang, Y. Jiang, Y. Jiang, A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase change materials, Measur. Sci. Tech. 10 (1999) 201-205.

DOI: 10.1088/0957-0233/10/3/015

Google Scholar

[9] F. Kuznik, J. Virgone. Experimental assessment of a phase change material for wall building use, Appl. Energ. 86 (2009) 2038-(2046).

DOI: 10.1016/j.apenergy.2009.01.004

Google Scholar

[10] K. E. Omari, Y. L. Guer, P. Bruel, et al., Analysis of micro-dispersed PCM-composite boards behavior in a building's wall for different seasons, J. Build. Eng. 7 (2016) 361-371.

DOI: 10.1016/j.jobe.2016.07.013

Google Scholar

[11] P. Gimenez, A Jove, C. Prieto, et al., Effect of an increased thermal contact resistance in a salt PCM-graphite foam composite TES system, Renew. Energ. 106 (2017) 321-334.

DOI: 10.1016/j.renene.2017.01.032

Google Scholar

[12] W. Wu, X. Huang, K. Li, et al., A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion, Appl. Energ. 190 (2017) 474-480.

DOI: 10.1016/j.apenergy.2016.12.159

Google Scholar

[13] G. Feng, K. Huang, H. Xie, et al., DSC test error of phase change material (PCM) and its influence on the simulation of the PCM floor, Renew. Energ. 87 (2016) 1148-1153.

DOI: 10.1016/j.renene.2015.07.085

Google Scholar