Effect of Shrinkage Porosity and Degenerated Graphite on Fatigue Crack Initiation in Ductile Cast Iron

Article Preview

Abstract:

Heavy-section ductile iron castings solidify under low cooling rates, giving the risk to form defects like non-metallic inclusions, microporosities and degenerated shapes of graphite that have a negative effect on fatigue resistance, favoring the crack nucleation. The aim of this work is to precisely identify the defects that most affect the fatigue behavior in heavy-section castings, in order to guide the foundry to take the proper countermeasures. For this purpose, fatigue rotating bending tests were carried out on specimens machined from small-scale samples opportunely cast to reproduce long solidification times. The fracture surface of broken samples were investigated by means of Scanning Electron Microscopy in order to identify crack initiation points and fracture mechanisms. Shrinkage porosities and spiky graphite were found to play the most important effect on crack nucleation, lowering the fatigue resistance of the castings, while chunky graphite just behaved as a preferential path for crack propagation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-98

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Collini, A. Pirondi, R. Bianchi, M. Cova and P.P. Milella: Procedia Eng. Vol. 10 (2011), pp.2898-2903.

DOI: 10.1016/j.proeng.2011.04.481

Google Scholar

[2] E. Foglio, D. Lusuardi, A. Pola, G.M. La Vecchia and M. Gelfi: Mater. Des. Vol. 111 (2016), pp.353-361.

DOI: 10.1016/j.matdes.2016.09.002

Google Scholar

[3] P. Ferro, P. Lazzarin and F. Berto: Mater. Sci. Eng. A Vol. 554 (2012), pp.122-128.

Google Scholar

[4] P. Minnebo, KF. Nilsson and D. Blagoeva: J. Mater. Eng. Perform. Vol. 16 (2007), pp.35-45.

Google Scholar

[5] A. Mourujärvi, K. Widell, T. Saukkonen and H. Hänninen: Fatigue Fract. Eng. M. Vol. 32 (2009), pp.379-390.

Google Scholar

[6] M. Endo and K. Yanase: Theor. Appl. Fract. Mech. Vol. 69 (2014), pp.34-43.

Google Scholar

[7] P. Canzar, Z. Tonkovic and J. Kodvanj: Mater. Sci. Eng. A Vol. 556 (2012), pp.88-99.

Google Scholar

[8] G.L. Greno, J.L. Otegui and R.E. Boeri: Int. J. Fatigue Vol. 21 (1999), pp.35-43.

Google Scholar

[9] Y. Nadot, J. Mendez, N. Ranganathan and AS. Beranger: Fatigue Fract. Eng. M. Vol. 22 (1999), pp.289-300.

Google Scholar

[10] D.M. Stefanescu, G. Alonso, P. Larranaga, E. De la Fuente and R. Suarez: Acta Mater. Vol. 107 (2016), pp.102-126.

Google Scholar

[11] I.M. Andreiko, O.P. Ostash and V.V. Popovych: Mater. Sci+. Vol. 38(5) (2002), pp.659-671.

Google Scholar

[12] E. Foglio, M. Gelfi, A. Pola, S. Goffelli and D. Lusuardi: International Journal of Metalcasting Vol. 11(1) (2017), pp.33-43.

DOI: 10.1007/s40962-016-0112-9

Google Scholar

[13] Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions (Elsevier, 2002).

Google Scholar

[14] T. Borsato, F. Berto, P. Ferro and C. Carollo: Procedia Struct. Integr. Vol. 2 (2016), pp.3150-3157.

Google Scholar