[1]
A. Riccio, C. Di Costanzo, P. Di Gennaro, A. Sellitto, A. Raimondo. Intra-laminar progressive failure analysis of composite laminates with a large notch damage. Engineering Failure Analysis 2017; 73: 97-112.
DOI: 10.1016/j.engfailanal.2016.12.012
Google Scholar
[2]
S. Abrate. Impact on composite structures. Cambridge University Press 1998: 289.
Google Scholar
[3]
A. Raimondo, A. Riccio. Inter-laminar and intra-laminar damage evolution in composite panels with skin-stringer debonding under compression. Composites Part B: Engineering 2016; 94: 139-151.
DOI: 10.1016/j.compositesb.2016.03.058
Google Scholar
[4]
A. Riccio, M. Damiano, A. Raimondo, G. Di Felice, A. Sellitto. A fast numerical procedure for the simulation of inter-laminar damage growth in stiffened composite panels. Composite Structures 2016; 145: 203-216.
DOI: 10.1016/j.compstruct.2016.02.081
Google Scholar
[5]
R. Borrelli, A. Riccio, A. Sellitto, F. Caputo, T. Ludwig. On the use of global-local kinematic coupling approaches for delamination growth simulation in stiffened composite panels. Composites Science and Technology 2015; 115: 43-51.
DOI: 10.1016/j.compscitech.2015.04.010
Google Scholar
[6]
A. Riccio, S. Saputo, A. Sellitto. A user defined material model for the simulation of impact induced damage in composite. Key Engineering Materials 2016; 713: 14-17.
DOI: 10.4028/www.scientific.net/kem.713.14
Google Scholar
[7]
F. Caputo, G. Lamanna, A. De Luca, R. Borrelli, S. Franchitti. Global-Local FE Simulation of a Plate LVI Test; Structural Durability & Health Monitoring. TechScience 2013; 9(3): 253-267.
DOI: 10.32604/sdhm.2013.009.253
Google Scholar
[8]
F. Caputo, A. De Luca, G. Lamanna, V. Lopresto, A. Riccio. Numerical investigation of onset and evolution of LVI damages in Carbon-Epoxy plates. Composite Part B: Engineering 2015; 68: 385-391.
DOI: 10.1016/j.compositesb.2014.09.009
Google Scholar
[9]
R. Sepe, A. De Luca, G. Lamanna, F. Caputo. Numerical and experimental investigation of residual strength of a LVI damaged CFRP omega stiffened panel with a cut-out. Composites Part B: Engineering 2016; 102: 38-56.
DOI: 10.1016/j.compositesb.2016.07.009
Google Scholar
[10]
A. Turon, P.P. Camanho, J. Costa, C.G. Dávila. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mechanics of Materials 2006; 38(11): 1072-89.
DOI: 10.1016/j.mechmat.2005.10.003
Google Scholar
[11]
C. Bouvet, B. Castanié, M. Bizeul, J. -J. Barrau. Low velocity impact modelling in laminate composite panels with discrete interface elements. International Journal of Solids and Structures 2009; 46(14–15): 2809-21.
DOI: 10.1016/j.ijsolstr.2009.03.010
Google Scholar
[12]
S. Rivallant, C. Bouvet, N. Hongkarnjanakul. Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements. Composites Part A: Applied Science and Manufacturing 2013; 55: 83-93.
DOI: 10.1016/j.compositesa.2013.08.003
Google Scholar
[13]
A. Riccio, R. Ricchiuto, F. Di Caprio, A. Sellitto, A. Raimondo. Numerical investigation of constitutive material models on bonded joints in scarf repaired composite laminates. Engineering Fracture Mechanics 2017; 173: 91-106.
DOI: 10.1016/j.engfracmech.2017.01.003
Google Scholar
[14]
G. Perillo, R. Cristiano, A. Riccio. A Numerical/Experimental study on the impact and CAI behaviour of Glass Reinforced Composite plates. Submitted.
DOI: 10.1007/s10443-017-9628-2
Google Scholar
[15]
Abaqus 6. 14: Analysis User's Manual.
Google Scholar