Recommendations for a New Generation of Standards for Testing Numerical Assessment of Blast-Loaded Glass Windows

Article Preview

Abstract:

The determination of the blast protection level of civil engineering buildings components against explosive effects represents a design topic of crucial importance, in current practice. However, some key aspects of blast resistant structures design have been only marginally considered in the last decade, and currently still require appropriate regulations. This is especially true in the case of glass windows and facades, where the intrinsic material brittleness is the major influencing parameter for blast-resistant assemblies. While blast assessment of buildings and systems is usually achieved by means of experimental investigations, as well as Finite-Element numerical simulations, general regulations and guidelines are currently missing. In this regard, the European Reference Network for Critical Infrastructure Protection - Task Group (ERNCIP-TG) “Resistance of Structures to Explosion Effects” attempts to develop guidelines and recommendations aimed to harmonise test procedures in experimental testing of glass windows under blast, as well as standardized approaches for their vulnerability assessment via Finite Element numerical modelling. In this paper, major ERNCIP-TG outcomes and next challenges are briefly summarized.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Kalamar, R., Bedon, C., & Eliášová, M. (2017). Assessing the structural behaviour of square hollow glass columns subjected to combined compressive and impact loads via full-scale experiments. Engineering Structures, 143, 127-140.

DOI: 10.1016/j.engstruct.2017.04.016

Google Scholar

[2] G. Balssa, G. Panofre, J. F. Hurstel, J. Bez, C. Capdevielle, and V. Sciortino. Explosion de l'usine AZF de Toulouse: description des lésions prises en charge au titre d'accident du travail par la Caisse primaire d'assurance maladie de la Haute-Garonne. 65(6): 463–469, (2004).

DOI: 10.1016/s1775-8785(04)93503-5

Google Scholar

[3] Forquin, P. (2017). Brittle materials at high-loading rates: an open area of research. Phil. Trans. R. Soc. A 2017 375 20160436; DOI: 10. 1098/rsta. 2016. 0436.

DOI: 10.1098/rsta.2016.0436

Google Scholar

[4] Amadio C, Bedon C. Buckling of laminated glass elements in compression. J. Struct. Eng. 2011; 137(8): 803–10.

DOI: 10.1061/(asce)st.1943-541x.0000328

Google Scholar

[5] https: /erncip-project. jrc. ec. europa. eu/networks/tgs/buildings, consulted the 24th of April (2017).

Google Scholar

[6] R. Müller and M. Wagner. Berechnung sprengwirkungshemmender Fenster- und Fassadenkonstruktionen. Bauingenieur, 81(11): 475–487, (2008).

Google Scholar

[7] M. Timmel, S. Kolling, P. Osterrieder, and P. Du Bois. A finite element model for impact simulation with laminated glass. International Journal of Impact Engineering, 34: 1465–1478, (2007).

DOI: 10.1016/j.ijimpeng.2006.07.008

Google Scholar

[8] D. Sun, F. Andrieux, A. Ockewitz, H. Klamser, and J. Hogenmüller. Modelling of the failure behaviour of windscreens and component tests. In 5th European LS-DYNA Users Conference, 25-26 May, (2005).

Google Scholar

[9] X. Zhang, H. Hao, and G. Ma. Parametric study of laminated glass window response to blast loads. Engineering Structures, 56: 1707 – 1717, (2013).

DOI: 10.1016/j.engstruct.2013.08.007

Google Scholar

[10] S. J. Bennison, A. Jagota, and C. A. Smith. Fracture of glass/poly(vinyl butyral) (butacite) laminates in biaxial flexure. Journal of the American Ceramic Society, 82(7): 1761–1770, (1999).

DOI: 10.1111/j.1151-2916.1999.tb01997.x

Google Scholar

[11] H. D. Hidallana-Gamage, D. P. Thambiratnam, and N. J. Perera. Design guidance for blast-resistant glazing. Journal of Architectural Engineering, 21(3): 04015003, (2015).

DOI: 10.1061/(asce)ae.1943-5568.0000161

Google Scholar

[12] M. Larcher, G. Solomos, F. Casadei, N. Gebbeken. Experimental and Numerical Investigations of Laminated Glass Subjected to Blast Loading. International Journal of Impact Engineering 39: 42-50, (2012).

DOI: 10.1016/j.ijimpeng.2011.09.006

Google Scholar

[12] A. Burmeister. Moderne Fassaden - Explosionsschutz. In Glas im konstruktiven Ingenieurbau, Hochschule München, (2008).

Google Scholar

[13] J. Pelfrene, J. Kuntsche, S. V. Dam, W. V. Paepegem, and J. Schneider. Critical assessment of the post-breakage performance of blast loaded laminated glazing: Experiments and simulations. International Journal of Impact Engineering, 88: 61 – 71, (2016).

DOI: 10.1016/j.ijimpeng.2015.09.008

Google Scholar

[14] X. Zhang, H. Hao, and G. Ma. Parametric study of laminated glass window response to blast loads. Engineering Structures, 56: 1707 – 1717, (2013).

DOI: 10.1016/j.engstruct.2013.08.007

Google Scholar

[15] Larcher, M., Arrigoni, M., Bedon, C., van Doormaal, J. C. A. M., Haberacker, C., Hüsken, G.,.. & Valsamos, G. (2016).

Google Scholar

[16] A. van Doormaal, C. Haberacker, G. Hüsken, M. Larcher, A. Saarenheimo, G. Solomos, A. Stolz, L. Thamie, and C. Bedon. Numerical simulations for classification of blast loaded laminated glass: possibilities, limitations and recommendations - ERNCIP Thematic Group: Resistance of structures to explosion effects. Number JRC94928. Publications Office of the European Union, (2014).

DOI: 10.4028/www.scientific.net/kem.755.121

Google Scholar

[17] John M. Biggs (1964), Introduction to Structural Dynamics, McGraw-Hill Companies.

Google Scholar

[18] Unified Facilities Criteria UFC 3-240-02, 2008. Structures to Resist the Effects of Accidental Explosions, US Department of Defense, US Army Corps of Engineers, Naval facilities Engineering Command, Air Force Civil Engineer Support Agency – 5 December 2008 (replaces ARMY TM5-1300 of November 1990).

DOI: 10.21236/ada530875

Google Scholar

[19] Locking P. The Trouble with TNT equivalence, 26th International Symposium of Ballistics, Miami, (2011).

Google Scholar

[20] Dobratz, B. M., and P. C. Crawford. LLNL Handbook of Explosives, UCRL-52997, Lawrence Livermore National Laboratory., Change 2 (1985): 8-21.

Google Scholar

[21] Cooper, Paul W., Stanley R. Kurowski, and Paul W. Cooper. Introduction to the Technology of Explosives. New York: VCH, (1996).

Google Scholar

[22] Kingery, Charles N. Air blast parameters versus distance for hemispherical TNT surface bursts. No. BRL-1344. ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD, (1966).

Google Scholar

[23] Kinney, Gilbert Ford, and Kenneth Judson Graham. Explosive shocks in air., Berlin and New York, Springer-Verlag, (1985).

Google Scholar

[24] Karlos V; Solomos G; Larcher M. Analysis of the blast wave decay coefficient using the Kingery-Bulmash data. International Journal of Protective Strutures, 7 (3): 409-429, (2016).

DOI: 10.1177/2041419616659572

Google Scholar