[1]
D.O. Dusenberry. Handbook for blast-resistant design of buildings. John Wiley & Sons, Inc., Hoboken, New Jersey, (2010).
Google Scholar
[2]
L. Lantz, et al. Blast protection of unreinforced masonry walls: a state-of-the-art review. Advances in Civil Engineering, Hindawi, Volume 2016, (2016).
DOI: 10.1155/2016/8958429
Google Scholar
[3]
L. Figuli, et al. Application of recyclable materials for an increase in building safety against the explosion of an improvised explosive device. Advanced Materials Research, Volume 1001, Trans Tech Publication, 2014, Pages 447-452.
DOI: 10.4028/www.scientific.net/amr.1001.447
Google Scholar
[4]
M. Abdel-Mooty, S. Alhayawei, M. Issa. Performance of one-way reinforced concrete walls subjected to blast loads. International Journal of Safety and Security Eng., Vol. 6, No. 2 (2016) 406–417.
DOI: 10.2495/safe-v6-n2-406-417
Google Scholar
[5]
Information on http: /www. linex. com/pages/2010/about_linex. php.
Google Scholar
[6]
Information on http: /www. ral-mineralwolle. de/iii-ecological-aspects-of-mineral-wool. html.
Google Scholar
[7]
Information on http: /www. stado. cz/images/stories/virtuemart/TL/tk-Stado_Carbo_Resin. pdf.
Google Scholar
[8]
Z. Grúňová, R. Ponechal, J. Rybárik, M. Vertaľ. Patológia budov: poruchy pôsobením tepelno-vlhkostných javov. Žilinská univerzita v Žiline, (2015).
Google Scholar
[9]
A. Iringova. Impact of fire protection on the design of energy-efficient and eco-friendly building envelopes in timber structures. In: International Scientific Conference Fire Protection, Safety and Security 2017, Technical university in Zvolen, pp.72-78.
Google Scholar
[10]
J. Štoller, P. Dvořák. Evaluation of High Performance Concrete Samples under Explosive Blast Load. In: Transport Means 2016 - Proceedings of 20th International Scientific Conference. Kaunas, Litva: Kaunas University of Technology, 2016, pp.117-120.
Google Scholar
[11]
J. Štoller, P. Dvořák. Field Tests of Cementitious Composites Suitable for Protective Structures and Critical Infrastructure. Key Engineering Materials, Trans Tech Publications Ltd, Special Concrete and Composites 2016, 2016, vol. 722, no. October 2016, pp.3-11.
DOI: 10.4028/www.scientific.net/kem.722.3
Google Scholar
[12]
A. Fanfarová. The testing of surface fire retardants. In: Transactions of the VŠB - Technical University of Ostrava: safety engineering series. ISSN 1801-1764. - Vol. 8, no. 2 (2013), pp.6-9.
DOI: 10.2478/tvsbses-2013-0007
Google Scholar
[13]
Y. Su, C. Wu, and M. Griffith, Mitigation of blast effects on aluminum foam protected masonry walls, Transactions of Tianjin University, vol. 14, no. 1, p.558–562, (2008).
DOI: 10.1007/s12209-008-0096-5
Google Scholar
[14]
M. Maalej, V. W. J. Lin, M. P. Nguyen, and S. T. Quek, Engineered cementitious composites for effective strengthening of unreinforced masonry walls, Engineering Structures, vol. 32, no. 8, p.2432–2439, (2010).
DOI: 10.1016/j.engstruct.2010.04.017
Google Scholar
[15]
P.A. Buchan, J.F. Chen. Blast resistance of FRP composites and polymer strengthened concrete and masonry structures – A state-of-the-art review. Composites: Part B engineering 38 (2007) 509–522.
DOI: 10.1016/j.compositesb.2006.07.009
Google Scholar
[16]
Ross CA, Purcell MR, Jerome EL. Blast response of concrete beams and slabs externally reinforced with fibre reinforced plastics (FRP). In: Proceedings of the Struct. Cong. XV – building to last, Portland, USA; 1997. p.673–77.
Google Scholar
[17]
K. J. Knox, M. I. Hammons, T. T. Lewis, and J. R. Porter, Polymer Materials for Structural Retrofit, Force Protection Branch, Air Expeditionary Force Technology Division, Air Force Research Laboratory, Tyndall Air Force Base, Fla, USA, (2000).
DOI: 10.21236/ada460562
Google Scholar
[18]
Hani A. Salim et al. Blast-Retrofit of CMU Walls Using Steel Sheets.
Google Scholar
[19]
F. Simančík. Metallic foams – ultra light materials for structural applications. INŹYNIERIA MATERIAŁOWA Nr. 5/2001, 823-828.
Google Scholar
[20]
Information on: http: /www. matnet. sav. sk/data/files/905. pdf.
Google Scholar