MM-ALE Modelling Technique for Blast Response Analysis of Light Armoured Vehicles (LAV) According to AEP-55 Standard: Pros and Cons

Article Preview

Abstract:

A precise, simple and efficient blast response numerical analysis of Light Armoured Vehicles (LAVs) as well as other structures is of great importance in the early design stages of prototype development in order to reduce the final cost. One of the most commonly used modelling techniques for blast response analyses of structures is the Multi-Material Arbitrary-Language-Euler (MM-ALE) method. However, the method is quite demanding for use, especially when complicated geometries such as LAV designs are involved. This paper presents a review of the pros and cons of the MM-ALE modelling technique for blast response analysis of LAV according to the testing procedures required by the AEP-55 standard.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-169

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Len Schwer, Teng H, Souli M. LS-DYNA Air Blast Techniques: Comparisons with Experiments for Close-in Charges. 10th European LS-DYNA Conference 2015. Würzburg, Germany2015.

Google Scholar

[2] LSTC. LS-DYNA Keyword User's Manual, Volume I. Livermore, California2013.

Google Scholar

[3] Alia A, Souli M. High explosive simulation using multi-material formulations. Applied Thermal Engineering. 2006; 26: 1032-42.

DOI: 10.1016/j.applthermaleng.2005.10.018

Google Scholar

[4] Chafi MS, Karami G, Ziejewski M. Numerical analysis of blast-induced wave propagation using FSI and ALEmulti-material formulations. International Journal of Impact Engineering. 2009; 36: 1269-75.

DOI: 10.1016/j.ijimpeng.2009.03.007

Google Scholar

[5] Olovsson L, Souli M. ALE and Fluid-Structure Interaction Capabilities in LS-DYNA.

Google Scholar

[6] Souli M, Ouahsine A, Lewin L. ALE formulation for fluid–structure interaction problems. Computer Methods in Applied Mechanics and Engineering. 2000; 190: 659-75.

DOI: 10.1016/s0045-7825(99)00432-6

Google Scholar

[7] Trajkovski J, Kunc R, Perenda J, Prebil I. Minimum mesh design criteria for blast wave development and structural response-MMALE method. Latin American Journal of Solids and Structures. 2014; 11: 1999-(2017).

DOI: 10.1590/s1679-78252014001100006

Google Scholar

[8] Len Schwer MAS, James O'Daniel & Timothy M. Madsen, . Free air blast simulation: Engineering model and MM-ALE calculation.

Google Scholar

[9] Barsotti MA, Puryear JMH, Stevens DJ, Alberson RM, McMahon P. Modeling Mine Blast with SPH. 12th International LS-DYNA User Conference, Detroit, USA2012.

Google Scholar

[10] Genevieve T, Robert D. Finite element simulation using SPH particles as loading on typical Light Armoured Vehicles. 10th International LS-DYNA users conference2008.

Google Scholar

[11] Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid–structure interaction by SPH. Computers & Structures. 2007; 85: 879-90.

DOI: 10.1016/j.compstruc.2007.01.002

Google Scholar

[12] Olovsson L, Hanssen AG, Børvik T, Langseth M. A particle-based approach to close-range blast loading. European Journal of Mechanics - A/Solids. 2010; 29: 1-6.

DOI: 10.1016/j.euromechsol.2009.06.003

Google Scholar

[13] Børvik T, Olovsson L, Hanssen AG, Dharmasena KP, Hansson H, Wadley HNG. A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates. Journal of the Mechanics and Physics of Solids. 2011; 59: 940-58.

DOI: 10.1016/j.jmps.2011.03.004

Google Scholar

[14] Zhao CF, Chen JY, Wang Y, Lu SJ. Damage mechanism and response of reinforced concrete containment structure under internal blast loading. Theoretical and Applied Fracture Mechanics. 2012; 61: 12-20.

DOI: 10.1016/j.tafmec.2012.08.002

Google Scholar

[15] Neuberger A, Peles S, Rittel D. Scaling the response of circular plates subjected to large and close-range spherical explosions. Part I: Air-blast loading. International Journal of Impact Engineering. 2007; 34: 859-73.

DOI: 10.1016/j.ijimpeng.2006.04.001

Google Scholar

[16] Neuberger A, Peles S, Rittel D. Scaling the response of circular plates subjected to large and close-range spherical explosions. Part II: Buried charges. International Journal of Impact Engineering. 2007; 34: 874-82.

DOI: 10.1016/j.ijimpeng.2006.04.002

Google Scholar

[17] Zakrisson B, Häggblad H-Á, Jonsén P. Modelling and simulation of explosions in soil interacting with deformable structures. centeurjeng. 2012; 2: 532-50.

DOI: 10.2478/s13531-012-0021-5

Google Scholar

[18] Zakrisson B, Wikman B, Häggblad H-Å. Numerical simulations of blast loads and structural deformation from near-field explosions in air. International Journal of Impact Engineering. 2011; 38: 597-612.

DOI: 10.1016/j.ijimpeng.2011.02.005

Google Scholar

[19] AEP-55. Procedures for evaluating the protection level of logistic and light armored vehicles (1st ed. ), vol. 2 NATO, (2006).

Google Scholar

[20] Soutis C, Mohamed G, Hodzic A. Modelling the structural response of GLARE panels to blast load. Composite Structures. 2011; 94: 267-76.

DOI: 10.1016/j.compstruct.2011.06.014

Google Scholar

[21] Erdik A, Kilic SA, Kilic N, Bedir S. Numerical simulation of armored vehicles subjected to undercarriage landmine blasts. Shock Waves. 2015: 1-16.

DOI: 10.1007/s00193-015-0576-1

Google Scholar

[22] Chung Kim Yuen S, Langdon GS, Nurick GN, Pickering EG, Balden VH. Response of V-shape plates to localised blast load: Experiments and numerical simulation. International Journal of Impact Engineering. 2012; 46: 97-109.

DOI: 10.1016/j.ijimpeng.2012.02.007

Google Scholar

[23] Fox DM, Huang X, Jung D, Fourney WL, Leiste U, Lee JS. The response of small scale rigid targets to shallow buried explosive detonations. International Journal of Impact Engineering. 2011; 38: 882-91.

DOI: 10.1016/j.ijimpeng.2011.05.009

Google Scholar

[24] Jayasinghe LB, Thambiratnam DP, Perera N, Jayasooriya JHAR. Computer simulation of underground blast response of pile in saturated soil. Computers & Structures. 2013; 120: 86-95.

DOI: 10.1016/j.compstruc.2013.02.016

Google Scholar

[25] Langdon GS, Rossiter IB, Balden VH, Nurick GN. Performance of mild steel perforated plates as a blast wave mitigation technique: Experimental and numerical investigation. International Journal of Impact Engineering. 2010; 37: 1021-36.

DOI: 10.1016/j.ijimpeng.2010.06.001

Google Scholar

[26] Liu X, Tian X, Lu TJ, Zhou D, Liang B. Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores. Composite Structures. 2012; 94: 2485-93.

DOI: 10.1016/j.compstruct.2012.02.029

Google Scholar

[27] Ma L, Xin J, Hu Y, Zheng J. Ductile and brittle failure assessment of containment vessels subjected to internal blast loading. International Journal of Impact Engineering. 2013; 52: 28-36.

DOI: 10.1016/j.ijimpeng.2012.09.004

Google Scholar

[28] Pi SJ, Cheng DS, Cheng HL, Li WC, Hung CW. Fluid–structure-interaction for a steel plate subjected to non-contact explosion. Theoretical and Applied Fracture Mechanics. 2012; 59: 1-7.

DOI: 10.1016/j.tafmec.2012.05.001

Google Scholar

[29] Spranghers K, Vasilakos I, Lecompte D, Sol H, Vantomme J. Numerical simulation and experimental validation of the dynamic response of aluminum plates under free air explosions. International Journal of Impact Engineering. 2013; 54: 83-95.

DOI: 10.1016/j.ijimpeng.2012.10.014

Google Scholar

[30] Tai YS, Chu TL, Hu HT, Wu JY. Dynamic response of a reinforced concrete slab subjected to air blast load. Theoretical and Applied Fracture Mechanics. 2011; 56: 140-7.

DOI: 10.1016/j.tafmec.2011.11.002

Google Scholar

[31] www. army-technology. com. Concord 8 (C8).

Google Scholar

[32] www. army-technology. com. ATOM 8x8.

Google Scholar

[33] Showichen A, Amer Hameed. Numerical analyses of vehicle bottom structures subjected to anti-tank mine explosions [PhD thesis]: Defence College of Management and Technology, Cranfield University; (2008).

Google Scholar

[34] Zukas JA, Walters WP. Explosive Effects and Applications: Springer London, Limited; (2002).

Google Scholar

[35] Bernetič J, Kosec B, Smolej A. Razvoj modela za napovedovanje kaljivosti visokotrdnih malolegiranih jekel: doktorska disertacija: J. Bernetič; (2013).

Google Scholar

[36] Bernetič J, Vuherer T, Marčetič M, Vuruna M. Experimental research on new grade of steel protective material for the light armored vehicles. Journal of Mechanical Engineering. 2012; 58.

DOI: 10.5545/sv-jme.2011.275

Google Scholar

[37] Trajkovski J, Kunc R, Pepel V, Prebil I. Flow and fracture behavior of high-strength armor steel PROTAC 500. Materials & Design. 2015; 66: 37-45.

DOI: 10.1016/j.matdes.2014.10.030

Google Scholar