[1]
Len Schwer, Teng H, Souli M. LS-DYNA Air Blast Techniques: Comparisons with Experiments for Close-in Charges. 10th European LS-DYNA Conference 2015. Würzburg, Germany2015.
Google Scholar
[2]
LSTC. LS-DYNA Keyword User's Manual, Volume I. Livermore, California2013.
Google Scholar
[3]
Alia A, Souli M. High explosive simulation using multi-material formulations. Applied Thermal Engineering. 2006; 26: 1032-42.
DOI: 10.1016/j.applthermaleng.2005.10.018
Google Scholar
[4]
Chafi MS, Karami G, Ziejewski M. Numerical analysis of blast-induced wave propagation using FSI and ALEmulti-material formulations. International Journal of Impact Engineering. 2009; 36: 1269-75.
DOI: 10.1016/j.ijimpeng.2009.03.007
Google Scholar
[5]
Olovsson L, Souli M. ALE and Fluid-Structure Interaction Capabilities in LS-DYNA.
Google Scholar
[6]
Souli M, Ouahsine A, Lewin L. ALE formulation for fluid–structure interaction problems. Computer Methods in Applied Mechanics and Engineering. 2000; 190: 659-75.
DOI: 10.1016/s0045-7825(99)00432-6
Google Scholar
[7]
Trajkovski J, Kunc R, Perenda J, Prebil I. Minimum mesh design criteria for blast wave development and structural response-MMALE method. Latin American Journal of Solids and Structures. 2014; 11: 1999-(2017).
DOI: 10.1590/s1679-78252014001100006
Google Scholar
[8]
Len Schwer MAS, James O'Daniel & Timothy M. Madsen, . Free air blast simulation: Engineering model and MM-ALE calculation.
Google Scholar
[9]
Barsotti MA, Puryear JMH, Stevens DJ, Alberson RM, McMahon P. Modeling Mine Blast with SPH. 12th International LS-DYNA User Conference, Detroit, USA2012.
Google Scholar
[10]
Genevieve T, Robert D. Finite element simulation using SPH particles as loading on typical Light Armoured Vehicles. 10th International LS-DYNA users conference2008.
Google Scholar
[11]
Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid–structure interaction by SPH. Computers & Structures. 2007; 85: 879-90.
DOI: 10.1016/j.compstruc.2007.01.002
Google Scholar
[12]
Olovsson L, Hanssen AG, Børvik T, Langseth M. A particle-based approach to close-range blast loading. European Journal of Mechanics - A/Solids. 2010; 29: 1-6.
DOI: 10.1016/j.euromechsol.2009.06.003
Google Scholar
[13]
Børvik T, Olovsson L, Hanssen AG, Dharmasena KP, Hansson H, Wadley HNG. A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates. Journal of the Mechanics and Physics of Solids. 2011; 59: 940-58.
DOI: 10.1016/j.jmps.2011.03.004
Google Scholar
[14]
Zhao CF, Chen JY, Wang Y, Lu SJ. Damage mechanism and response of reinforced concrete containment structure under internal blast loading. Theoretical and Applied Fracture Mechanics. 2012; 61: 12-20.
DOI: 10.1016/j.tafmec.2012.08.002
Google Scholar
[15]
Neuberger A, Peles S, Rittel D. Scaling the response of circular plates subjected to large and close-range spherical explosions. Part I: Air-blast loading. International Journal of Impact Engineering. 2007; 34: 859-73.
DOI: 10.1016/j.ijimpeng.2006.04.001
Google Scholar
[16]
Neuberger A, Peles S, Rittel D. Scaling the response of circular plates subjected to large and close-range spherical explosions. Part II: Buried charges. International Journal of Impact Engineering. 2007; 34: 874-82.
DOI: 10.1016/j.ijimpeng.2006.04.002
Google Scholar
[17]
Zakrisson B, Häggblad H-Á, Jonsén P. Modelling and simulation of explosions in soil interacting with deformable structures. centeurjeng. 2012; 2: 532-50.
DOI: 10.2478/s13531-012-0021-5
Google Scholar
[18]
Zakrisson B, Wikman B, Häggblad H-Å. Numerical simulations of blast loads and structural deformation from near-field explosions in air. International Journal of Impact Engineering. 2011; 38: 597-612.
DOI: 10.1016/j.ijimpeng.2011.02.005
Google Scholar
[19]
AEP-55. Procedures for evaluating the protection level of logistic and light armored vehicles (1st ed. ), vol. 2 NATO, (2006).
Google Scholar
[20]
Soutis C, Mohamed G, Hodzic A. Modelling the structural response of GLARE panels to blast load. Composite Structures. 2011; 94: 267-76.
DOI: 10.1016/j.compstruct.2011.06.014
Google Scholar
[21]
Erdik A, Kilic SA, Kilic N, Bedir S. Numerical simulation of armored vehicles subjected to undercarriage landmine blasts. Shock Waves. 2015: 1-16.
DOI: 10.1007/s00193-015-0576-1
Google Scholar
[22]
Chung Kim Yuen S, Langdon GS, Nurick GN, Pickering EG, Balden VH. Response of V-shape plates to localised blast load: Experiments and numerical simulation. International Journal of Impact Engineering. 2012; 46: 97-109.
DOI: 10.1016/j.ijimpeng.2012.02.007
Google Scholar
[23]
Fox DM, Huang X, Jung D, Fourney WL, Leiste U, Lee JS. The response of small scale rigid targets to shallow buried explosive detonations. International Journal of Impact Engineering. 2011; 38: 882-91.
DOI: 10.1016/j.ijimpeng.2011.05.009
Google Scholar
[24]
Jayasinghe LB, Thambiratnam DP, Perera N, Jayasooriya JHAR. Computer simulation of underground blast response of pile in saturated soil. Computers & Structures. 2013; 120: 86-95.
DOI: 10.1016/j.compstruc.2013.02.016
Google Scholar
[25]
Langdon GS, Rossiter IB, Balden VH, Nurick GN. Performance of mild steel perforated plates as a blast wave mitigation technique: Experimental and numerical investigation. International Journal of Impact Engineering. 2010; 37: 1021-36.
DOI: 10.1016/j.ijimpeng.2010.06.001
Google Scholar
[26]
Liu X, Tian X, Lu TJ, Zhou D, Liang B. Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores. Composite Structures. 2012; 94: 2485-93.
DOI: 10.1016/j.compstruct.2012.02.029
Google Scholar
[27]
Ma L, Xin J, Hu Y, Zheng J. Ductile and brittle failure assessment of containment vessels subjected to internal blast loading. International Journal of Impact Engineering. 2013; 52: 28-36.
DOI: 10.1016/j.ijimpeng.2012.09.004
Google Scholar
[28]
Pi SJ, Cheng DS, Cheng HL, Li WC, Hung CW. Fluid–structure-interaction for a steel plate subjected to non-contact explosion. Theoretical and Applied Fracture Mechanics. 2012; 59: 1-7.
DOI: 10.1016/j.tafmec.2012.05.001
Google Scholar
[29]
Spranghers K, Vasilakos I, Lecompte D, Sol H, Vantomme J. Numerical simulation and experimental validation of the dynamic response of aluminum plates under free air explosions. International Journal of Impact Engineering. 2013; 54: 83-95.
DOI: 10.1016/j.ijimpeng.2012.10.014
Google Scholar
[30]
Tai YS, Chu TL, Hu HT, Wu JY. Dynamic response of a reinforced concrete slab subjected to air blast load. Theoretical and Applied Fracture Mechanics. 2011; 56: 140-7.
DOI: 10.1016/j.tafmec.2011.11.002
Google Scholar
[31]
www. army-technology. com. Concord 8 (C8).
Google Scholar
[32]
www. army-technology. com. ATOM 8x8.
Google Scholar
[33]
Showichen A, Amer Hameed. Numerical analyses of vehicle bottom structures subjected to anti-tank mine explosions [PhD thesis]: Defence College of Management and Technology, Cranfield University; (2008).
Google Scholar
[34]
Zukas JA, Walters WP. Explosive Effects and Applications: Springer London, Limited; (2002).
Google Scholar
[35]
Bernetič J, Kosec B, Smolej A. Razvoj modela za napovedovanje kaljivosti visokotrdnih malolegiranih jekel: doktorska disertacija: J. Bernetič; (2013).
Google Scholar
[36]
Bernetič J, Vuherer T, Marčetič M, Vuruna M. Experimental research on new grade of steel protective material for the light armored vehicles. Journal of Mechanical Engineering. 2012; 58.
DOI: 10.5545/sv-jme.2011.275
Google Scholar
[37]
Trajkovski J, Kunc R, Pepel V, Prebil I. Flow and fracture behavior of high-strength armor steel PROTAC 500. Materials & Design. 2015; 66: 37-45.
DOI: 10.1016/j.matdes.2014.10.030
Google Scholar