[1]
R.D. Adams, P. Cawley, A review of defect types and nondestructive testing techniques for composites and bonded joints, NDT International, 21(1988) 208-222.
DOI: 10.1016/0308-9126(88)90333-1
Google Scholar
[2]
L. M. Brown, C.A. Lebowitz, Classification of defects in thick section graphite epoxy test blocks, in: R.E. Green, K.J. Kozaczek and C.O. Ruud (Eds.), Nondestructive Characterization of Materials VI, Plenum Press, 1994, p.669–676.
DOI: 10.1007/978-1-4615-2574-5_85
Google Scholar
[3]
Xiang-Fa Wu, Yuris A. Dzenis, Experimental determination of probabilistic edge-delamination strength of a graphite–fiber/epoxy composite, Composite Structures, 70(2005) 100-108.
DOI: 10.1016/j.compstruct.2004.08.016
Google Scholar
[4]
J.A. Schroeder, T. Ahmed, B. Chaudhry, S. Shepard, Non-destructive testing of structural composites and adhesively bonded composite joints: pulsed thermography, Composite Part A: Appl Sci Manuf, 33 (2002), p.1511–1518.
DOI: 10.1016/s1359-835x(02)00139-2
Google Scholar
[5]
R. Raišutis, R. Kažys, E. Žukauskas, L. Mažeika, Ultrasonic air-coupled testing of square-shape CFRP composite rods by means of guided waves, NDT & E International, 44(2011) 645-654.
DOI: 10.1016/j.ndteint.2011.07.001
Google Scholar
[6]
Sanjeevareddy Kolkoori, Norma Wrobel, Uwe Zscherpel, Uwe Ewert A new X-ray backscatter imaging technique for non-destructive testing of aerospace materials NDT & E International, 70(2015) 41-52.
DOI: 10.1016/j.ndteint.2014.09.008
Google Scholar
[7]
A. Kravcov, P. Svoboda, A. Konvalinka, E. B. Cherepetskaya, I.E. Sas, N. A. Morozov, J. Zatloukal, J. Koťátková. Evaluation of Crack Formation in Concrete and Basalt Specimens under Cyclic Uniaxial Load Using Acoustic Emission and Computed X-Ray Tomography. Key Engineering Materials. Volume 722, pp.247-253 (2017).
DOI: 10.4028/www.scientific.net/kem.722.247
Google Scholar
[8]
N. B. Podymova, A. A. Karabutov and E. B. Cherepetskaya. Laser optoacoustic method for quantitative nondestructive evaluation of the subsurface damage depth in ground silicon wafers. Laser Physics, Volume 24, Number 8 (2014).
DOI: 10.1088/1054-660x/24/8/086003
Google Scholar
[9]
D. Dobrovolskij, S. Hirsekorn, M. Spies. Simulation of Ultrasonic Materials Evaluation Experiments Including Scattering Phenomena due to Polycrystalline Microstructure. Physics Procedia. Volume 70, 2015, Pages 644-647.
DOI: 10.1016/j.phpro.2015.08.066
Google Scholar
[10]
Podymova N.B., Karabutov A.A., Kobeleva L.I. et al. Laser optoacoustic method of local porosity measurement of particles reinforced composites // Journal of Physics: Conference Series, v. 278, p.012038 (2011).
DOI: 10.1088/1742-6596/278/1/012038
Google Scholar
[11]
Kravcov, P. Svoboda, A. Konvalinka, E. B. Cherepetskaya, A. A. Karabutov, D. V. Morozov, I. A. Shibaev. Laser-Ultrasonic Testing of the Structure and Properties of Concrete and Carbon Fiber-Reinforced Plastics. Key Engineering Materials. Vol. 722, pp.267-272, (2017).
DOI: 10.4028/www.scientific.net/kem.722.267
Google Scholar
[12]
A.A. Karabutov, E. B. Cherepetskaya, N. B. Podymova. Laser-ultrasonic measurement of local elastic moduli. VIIIth International Workshop NDT in Progress, Oct 12-14 (2015).
Google Scholar
[13]
A.A. Karabutov, N.B. Podymova, E.B. Cherepetskaya, Measuring the dependence of the local Young's modulus on the porosity of isotropic composite materials by a pulsed acoustic method using a laser source of ultrasound, Journal of Applied Mechanics and Technical Physics, 54(3)(2013), 500-507.
DOI: 10.1134/s0021894413030218
Google Scholar