[1]
K.J.D. Mackenzie, M. Welter, Geopolymer (aluminosilicate) composites: synthesis, properties and applications, Woodhead Publishing Limited, (2014).
Google Scholar
[2]
S. Wild, J.M. Kinuthia, G.I. Jones, D.D. Higgins, Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime-stabilised sulphate-bearing clay soils, Eng. Geol. 51 (1998) 37–53.
DOI: 10.1016/s0013-7952(98)00039-8
Google Scholar
[3]
S. Song, D. Sohn, H.M. Jennings, T.O. Mason, Hydration of alkali-activated ground granulated blast furnace slag, J. Mater. Sci. 35 (2000) 249–257.
Google Scholar
[4]
R. Cioffi, L. Maffucci, L. Santoro, Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue, Resour. Conserv. Recycl. 40 (2003) 27–38.
DOI: 10.1016/s0921-3449(03)00023-5
Google Scholar
[5]
I.G. Richardson, A.R. Brough, G.W. Groves, C.M. Dobson, The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase, Cem. Concr. Res. 24 (1994) 813–829.
DOI: 10.1016/0008-8846(94)90002-7
Google Scholar
[6]
E. Barrie, V. Cappuyns, E. Vassilieva, R. Adriaens, S. Hollanders, D. Garcés, C. Paredes, Y. Pontikes, J. Elsen, L. Machiels, Potential of inorganic polymers (geopolymers) made of halloysite and volcanic glass for the immobilisation of tailings from gold extraction in Ecuador, Appl. Clay Sci. 109–110 (2015).
DOI: 10.1016/j.clay.2015.02.025
Google Scholar
[7]
D. Panias, I. Giannopoulou, The geopolymerization technology for the utilization of mining and metallurgical solid wastes, Proc. - Eur. Metall. Conf. EMC 2007. 2 (2007) 625–640.
Google Scholar
[8]
J. Kiventerä, Ł. Golek, J. Yliniemi, V. Ferreira, J. Deja, M. Illikainen Utilization of sulphidic tailings from gold mine as a raw material in geopolymerization, Int. J. Miner. Process. 149 (2016), 104-110.
DOI: 10.1016/j.minpro.2016.02.012
Google Scholar
[9]
F. Cihangir, B. Ercikdi, A. Kesimal, A. Turan, H. Deveci, Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage, Miner. Eng. 30 (2012) 33–43.
DOI: 10.1016/j.mineng.2012.01.009
Google Scholar
[10]
B. Ercikdi, A. Kesimal, F. Cihangir, H. Deveci, I. Alp, Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage, Cem. Concr. Compos. 31 (2009) 268–274.
DOI: 10.1016/j.cemconcomp.2009.01.008
Google Scholar
[11]
J. Zhang, J.L. Provis, D. Feng, J.S.J. van Deventer, The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers, Cem. Concr. Res. 38 (2008) 681–688.
DOI: 10.1016/j.cemconres.2008.01.006
Google Scholar
[12]
F. Cihangir, B. Ercikdi, A. Kesimal, H. Deveci, F. Erdemir, Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties, Miner. Eng. 83 (2015) 117–127.
DOI: 10.1016/j.mineng.2015.08.022
Google Scholar
[13]
E. Kapeluszna, Ł. Kotwica, A. Różycka, Ł. Gołek Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis, submitted to Constr. Build. Mater. (2017).
DOI: 10.1016/j.conbuildmat.2017.08.091
Google Scholar