[1]
A. Formisano, F. Gamardella, F. M. Mazzolani, F.M. Capacity and demand of ductility for shear connections in steel MRF structures, Civil-Comp Proceedings, 102, (2013).
DOI: 10.4203/ccp.102.13
Google Scholar
[2]
A.Y. Elghazouli, Assessment of European seismic design procedures for steel frames structures, Bulletin of Earthquake Engineering 8(1) (2010) 65-89.
DOI: 10.1007/s10518-009-9125-6
Google Scholar
[3]
X. Romao, R. Delgado, J. Guedes, A. Costa, A comparative application of different EC8-3 procedures for the seismic safety assessment of existing structures, Bulletin of Earthquake Engineering 8 (2010) 91-118.
DOI: 10.1007/s10518-009-9123-8
Google Scholar
[4]
A. Braconi, S. Caprili, H. Degee, M. Guendel, M. Hjaij, B. Hoffmeister, S. A. Karamanos, V. Rinaldi, W. Salvatore, Efficiency of Eurocode 8 design rules for steel and steel-concrete composite structures, Journal of Constructional Steel Research 112 (2015).
DOI: 10.1016/j.jcsr.2015.04.021
Google Scholar
[5]
M. Araujo, J. M. Castro, A critical review of European and American Provisions for the Seismic Assessment of Existing Steel Moment-Resisting Frame Buildings, Journal of Earthquake Engineering (2017) 1-29.
DOI: 10.1080/13632469.2016.1277568
Google Scholar
[6]
European Committee for Standardization (CEN), Eurocode 8. Design of structures for earthquake resistance – Part 3: Assessment and retrofitting of buildings, Brussels, Belgium, 2205.
Google Scholar
[7]
American Society of Civil Engineers (ASCE), Seismic evaluation and retrofit of existing buildings. ASCE/SEI 41-13, Reston, Virginia, USA, (2014).
DOI: 10.1061/9780784414859.err
Google Scholar
[8]
A. S. Elnashai, L. Di Sarno, Fundamentals of Earthquake Engineering: From the Source to Fragility, John Wiley & Sons, Chichester, UK, ISBN 976-0-470-02483-6, (2015).
Google Scholar
[9]
A. Formisano, R. Landolfo, F.M. Mazzolani, Robustness assessment approaches for steel framed structures under catastrophic events, Computers and Structures 147 (2015) 216-228.
DOI: 10.1016/j.compstruc.2014.09.010
Google Scholar
[10]
R. Landolfo, F. M. Mazzolani, R. Zandonini, Steel and Steel-Concrete Composite Structures. In The state of Earthquake Engineering Research in Italy: the ReLUIS-DPC 2010-2013 Project, G. Manfredi, M. Dolce (eds), 99-141, doi: 10. 14599/r101303, Doppiavoce, Napoli, Italy, (2015).
Google Scholar
[11]
F. Freddi, E. Tubaldi, A. Zona, Dall'Asta Seismic performance of structural systems equipped with buckling-restrained braces, XXVI Giornate Italiane della Costruzione in Acciaio, CTA Collegio dei Tecnici dell'Acciaio, Venice, Italy, 28-30 September, (2017).
Google Scholar
[12]
A. Nassirpour, B. Song, D. D'Ayala, IDA & Cloud Method for Fragility Assessment of Bare & Infilled Steel Frame Structures. 16th World Conference on Earthquake Engineering, Santiago, Chile, 9-13 January, 2017a.
Google Scholar
[13]
A. Nassirpour, B. Song, D. D'Ayala, Seismic loss estimation of mid-rise masonry infilled steel frame structures through incremental dynamic analysis, International Journal of Forensic Engineering 3(3) (2017) 255.
DOI: 10.1504/ijfe.2017.082975
Google Scholar
[14]
GEER, Engineering Reconnaissance of the 24 August 2016 Central Italy Earthquake, Version 2, Report No. GEER-050B, Version 2 (11), doi: 10. 18118/G61S3Z, (2016).
Google Scholar
[15]
Gruppo di Lavoro INGV sul terremoto in centro Italia, Summary report on the October 30, 2016 earthquake in central Italy Mw 6. 5, doi: 10. 5281/zenodo. 166238, (2016).
Google Scholar
[16]
Ministero per le Infrastrutture e i Trasporti, Norme Tecniche per le Costruzioni, Roma, Italy (in Italian), (2008).
Google Scholar
[17]
Ministero per i Lavori Pubblici, Decreto Ministeriale 16 Gennaio 1996 – Norme Tecniche per le Costruzioni in Zone Sismiche, Roma, Italy (in Italian), (2008).
Google Scholar
[18]
Midas Engineering Software, Integrated Solution System for Building and General Structures, (2017).
Google Scholar
[19]
M. Menegotto, P. E. Pinto, Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. Proceedings of the IABSE Symposium of Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, International Assoc. of Bridge and Structural Engineering, Lisbon, Portugal, 13, 15-22, (1973).
Google Scholar
[20]
F. J. Crisafully, A. J. Carr, R. Park, Analytical modelling of infilled frame structures. A general overview, Bulletin of Te New Zealand Society for Earthquake Engineering 33(1) (2000) 30-47.
DOI: 10.5459/bnzsee.33.1.30-47
Google Scholar
[21]
A. S. Elnashai, L. Di Sarno, Fundamentals of Earthquake Engineering, Wiley and Sons, UK, (2008).
Google Scholar
[22]
R.E. Klingner, V. V. Bertero, Infilled Frames in Earthquake-Resistant Construction, Report no. EERC 76-32, University of California, Berkeley, USA, (1976).
Google Scholar
[23]
G. Al-Chaar, Evaluating Strength and Stiffness of Unreinforced Masonry Infill Structures. U.S. Army Corps of Engineers, Construction Engineering Research Laboratories, Report no. ERDC/CERL TR-02-01, USA, (2002).
DOI: 10.21236/ada407072
Google Scholar
[24]
M.N. Fardis, T. B. Panagiotakos, Seismic design and response of bare and infilled reinforced concrete buildings. Part II: Infilled structures, Journal of Earthquake Engineering 1(3) (1997) 475-503.
DOI: 10.1080/13632469708962375
Google Scholar
[25]
Comite Europeen de Normalisation (CEN), Eurocode 8 — Design of structures for earthquake resistance - Part 3: Assessment and retrofitting of buildings, Brussels, (2006).
Google Scholar
[26]
P. Fajfar, P. Gaspersic, P., The N2 Method for the Seismic Damage Analysis of RC Buildings, Earthquake Engineering and Structural Dynamics 25(1) (1996) 31-46.
DOI: 10.1002/(sici)1096-9845(199601)25:1<31::aid-eqe534>3.0.co;2-v
Google Scholar