Lightweight Steel Constructions for Seismic Areas

Article Preview

Abstract:

Lightweight steel constructions are one of the innovative constructional systems steadily increasing in spread due to their huge benefits in respect to more traditional constructional systems. Typical lightweight steel products, usually combined with gypsum, wood and cement based panels, can be used to build both structural and nonstructural systems. After a brief description of the most common lightweight steel constructional systems, this paper describes the state of the art by focusing the attention on their behaviour under seismic actions. In particular, the main past and ongoing research themes are briefly summarised and a critical comparison among seismic codes available in North America, Europe and Oceania is presented. Finally, an overview of studies carried out on this topic at the University of Naples Federico II is presented and latest research activities involving the seismic performance assessment of both lightweight steel structural and nonstructural architectonic systems though shake-table tests is provided.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-49

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Federal Emergency Management Agency, FEMA E-74 Reducing the Risks of Nonstructural Earthquake Damage, Washigton, D.C., (2011).

Google Scholar

[2] C.S. McCreless, T.S.T. Jr., Experimental investigation of steel stud shear wall diaphragms, in: Proc., 4th Int. Spec. Conf. Cold-Formed Steel Struct., Missouri University of Science and Technology, St. Louis, 1978: p.647–672.

Google Scholar

[3] T.S. Tarpy, S.F. Hauenstein, Effect of construction details on shear resistance of steel-stud wall panels- A Research Project Sponsored by American Iron and Steel Institute, Project No. 1201-412, Nashville, TN, (1978).

Google Scholar

[4] S.A. Adham, V. Avanessian, G.C. Hart, R.W. Anderson, J. Elmlinger, J. Gregory, Shear Wall Resistance of Lightgage Steel Stud Wall Systems, Earthq. Spectra. 6 (1990) 1–14. doi: 10. 1193/1. 1585555.

DOI: 10.1193/1.1585555

Google Scholar

[5] E.F. Gad, C.F. Duffield, G.L. Hutchinson, D.S. Mansell, G. Stark, Lateral performance of cold-formed steel-framed domestic structures, Eng. Struct. 21 (1999) 83–95. doi: 10. 1016/S0141-0296(97)90129-2.

DOI: 10.1016/s0141-0296(97)90129-2

Google Scholar

[6] B.W. Schafer, D. Ayhan, J. Leng, P. Liu, D. Padilla-Llano, K.D. Peterman, et al., Seismic Response and Engineering of Cold-formed Steel Framed Buildings, Structures. 8 (2016) 197–212. doi: 10. 1016/j. istruc. 2016. 05. 009.

DOI: 10.1016/j.istruc.2016.05.009

Google Scholar

[7] M.S. Hoehler, C.M. Smith, T.C. Hutchinson, X. Wang, B.J. Meacham, P. Kamath, Behavior of steel-sheathed shear walls subjected to seismic and fire loads, Fire Saf. J. 91 (2017) 524–531. doi: 10. 1016/j. firesaf. 2017. 03. 021.

DOI: 10.1016/j.firesaf.2017.03.021

Google Scholar

[8] T. -W. Kim, J. Wilcoski, D.A. Foutch, M.S. Lee, Shaketable tests of a cold-formed steel shear panel, Eng. Struct. 28 (2006) 1462–1470. doi: 10. 1016/j. engstruct. 2006. 01. 014.

DOI: 10.1016/j.engstruct.2006.01.014

Google Scholar

[9] I. Shamim, D. Morello, C. Rogers, Dynamic testing and analyses of wood sheathed/CFS framed shear walls, in: 9th US Natl. 10th Can. Conf. Earthq. Eng., Toronto, Canada, 2010: p. Paper No. 1069.

Google Scholar

[10] I. Shamim, J. DaBreo, C.A. Rogers, Dynamic Testing of Single- and Double-Story Steel-Sheathed Cold-Formed Steel-Framed Shear Walls, J. Struct. Eng. 139 (2013) 807–817. doi: 10. 1061/(ASCE)ST. 1943-541X. 0000594.

DOI: 10.1061/(asce)st.1943-541x.0000594

Google Scholar

[11] L. Fülöp, D. Dubina, Performance of wall-stud cold-formed shear panels under monotonic and cyclic loading Part I: Experimental research, Thin-Walled Struct. 42 (2004) 321–338. doi: 10. 1016/S0263-8231(03)00063-6.

DOI: 10.1016/s0263-8231(03)00063-6

Google Scholar

[12] D. Dubina, Behavior and performance of cold-formed steel-framed houses under seismic action, 64 (2008) 896–913. doi: 10. 1016/j. jcsr. 2008. 01. 029.

DOI: 10.1016/j.jcsr.2008.01.029

Google Scholar

[13] R. Serrette, D.P. Nolan, Reversed Cyclic Performance of Shear Walls with Wood Panels Attached to Cold-Formed Steel with Pins, J. Struct. Eng. 135 (2009) 959–967. doi: 10. 1061/(ASCE)ST. 1943-541X. 0000037.

DOI: 10.1061/(asce)st.1943-541x.0000037

Google Scholar

[14] C. Yu, Shear resistance of cold-formed steel framed shear walls with 0. 686 mm, 0. 762 mm, and 0. 838 mm steel sheet sheathing, Eng. Struct. 32 (2010) 1522–1529. doi: 10. 1016/j. engstruct. 2010. 01. 029.

DOI: 10.1016/j.engstruct.2010.01.029

Google Scholar

[15] P. Liu, K.D. Peterman, B.W. Schafer, Impact of construction details on OSB-sheathed cold-formed steel framed shear walls, J. Constr. Steel Res. 101 (2014) 114–123. doi: 10. 1016/j. jcsr. 2014. 05. 003.

DOI: 10.1016/j.jcsr.2014.05.003

Google Scholar

[16] Q. Peck, N. Rogers, R. Serrette, Cold-Formed Steel Framed Gypsum Shear Walls: In-Plane Response, J. Struct. Eng. 138 (2012) 932–941. doi: 10. 1061/(ASCE)ST. 1943-541X. 0000521.

DOI: 10.1061/(asce)st.1943-541x.0000521

Google Scholar

[17] J. Ye, X. Wang, H. Jia, M. Zhao, Cyclic performance of cold-formed steel shear walls sheathed with double-layer wallboards on both sides, Thin-Walled Struct. 92 (2015) 146–159. doi: 10. 1016/j. tws. 2015. 03. 005.

DOI: 10.1016/j.tws.2015.03.005

Google Scholar

[18] X. Wang, J. Ye, Reversed cyclic performance of cold-formed steel shear walls with reinforced end studs, J. Constr. Steel Res. 113 (2015) 28–42. doi: 10. 1016/j. jcsr. 2015. 05. 012.

DOI: 10.1016/j.jcsr.2015.05.012

Google Scholar

[19] S. Esmaeili Niari, B. Rafezy, K. Abedi, Seismic behavior of steel sheathed cold-formed steel shear wall: Experimental investigation and numerical modeling, Thin-Walled Struct. 96 (2015) 337–347. doi: 10. 1016/j. tws. 2015. 08. 024.

DOI: 10.1016/j.tws.2015.08.024

Google Scholar

[20] S. Mohebbi, S.R. Mirghaderi, F. Farahbod, A. Bagheri Sabbagh, S. Torabian, Experiments on seismic behaviour of steel sheathed cold-formed steel shear walls cladded by gypsum and fiber cement boards, Thin-Walled Struct. 104 (2016).

DOI: 10.1016/j.tws.2016.03.015

Google Scholar

[21] K.D. Peterman, A.M. Asce, M.J.J. Stehman, R.L. Madsen, M. Asce, S.G. Buonopane, et al., Experimental Seismic Response of a Full-Scale Cold-Formed Steel-Framed Building . I : System-Level Response, 142 (2016).

DOI: 10.1061/(asce)st.1943-541x.0001577

Google Scholar

[22] K.D. Peterman, M.J.J. Stehman, R.L. Madsen, S.G. Buonopane, N. Nakata, B.W. Schafer, Experimental Seismic Response of a Full-Scale Cold-Formed Steel-Framed Building. II: Subsystem-Level Response, J. Struct. Eng. 142 (2016).

DOI: 10.1061/(asce)st.1943-541x.0001578

Google Scholar

[23] M. Al-Kharat, C.A. a. Rogers, Inelastic performance of cold-formed steel strap braced walls, J. Constr. Steel Res. 63 (2007) 460–474. doi: 10. 1016/j. jcsr. 2006. 06. 040.

DOI: 10.1016/j.jcsr.2006.06.040

Google Scholar

[24] M. Casafont, A. Arnedo, F. Roure, A. Rodríguez-Ferran, Experimental testing of joints for seismic design of lightweight structures. Part 3: Gussets, corner joints, x-braced frames, Thin-Walled Struct. 45 (2007).

DOI: 10.1016/j.tws.2007.05.008

Google Scholar

[25] H. Moghimi, H.R. Ronagh, Performance of light-gauge cold-formed steel strap-braced stud walls subjected to cyclic loading, Eng. Struct. 31 (2009) 69–83. doi: 10. 1016/j. engstruct. 2008. 07. 016.

DOI: 10.1016/j.engstruct.2008.07.016

Google Scholar

[26] K. Velchev, G. Comeau, N. Balh, C.A. Rogers, Evaluation of the AISI S213 seismic design procedures through testing of strap braced cold-formed steel walls, Thin-Walled Struct. 48 (2010) 846–856. doi: 10. 1016/j. tws. 2010. 01. 003.

DOI: 10.1016/j.tws.2010.01.003

Google Scholar

[27] M. Accorti, N. Baldassino, R. Zandonini, F. Scavazza, C.A. Rogers, Response of CFS Sheathed Shear Walls, Structures. 7 (2016) 100–112. doi: 10. 1016/j. istruc. 2016. 06. 009.

DOI: 10.1016/j.istruc.2016.06.009

Google Scholar

[28] R. Serrette, K. Ogunfunmi, Shear Resistance of Gypsum-Sheathed Light-Gauge Steel Stud Walls, J. Struct. Eng. 122 (1996) 383–389. doi: 10. 1061/(ASCE)0733-9445(1996)122: 4(383).

DOI: 10.1061/(asce)0733-9445(1996)122:4(383)

Google Scholar

[29] R. Serrette, Additional Shear Wall Values for Light Weight Steel Framing, Final Report, Santa Clara, CA, (1997).

Google Scholar

[30] R. TREMBLAY, E. MARTIN, W. YANG, C.A. ROGERS, ANALYSIS, TESTING AND DESIGN OF STEEL ROOF DECK DIAPHRAGMS FOR DUCTILE EARTHQUAKE RESISTANCE, J. Earthq. Eng. 8 (2004) 775–816. doi: 10. 1080/13632460409350509.

DOI: 10.1080/13632460409350509

Google Scholar

[31] P. Latreille, V. Nikolaidou, C. a. Rogers, D.G. Lignos, Characterization of Cold-Formed Steel Framed Diaphragm Response under In-Plane Loading and Influence of Non-Structural Gypsum Panels, in: Int. Spec. Conf. Cold-Formed Steel Struct., Missouri University of Science and Technology, 2010: p.1.

DOI: 10.1061/(asce)st.1943-541x.0001962

Google Scholar

[32] R. Tremblay, C.A. Rogers, Seismic design of low-rise steel buildings with flexible steel roof deck diaphragms - a Canadian perspective, Steel Constr. 4 (2011) 242–250. doi: 10. 1002/stco. 201110032.

DOI: 10.1002/stco.201110032

Google Scholar

[33] R. Massarelli, J. Franquet, K. Shrestha, R. Tremblay, C.A. Rogers, S. Deck, Seismic testing and retrofit of steel deck roof diaphragms for building structures, Thin Walled Struct. 61 (2012) 239–247. doi: 10. 1016/j. tws. 2012. 05. 013.

DOI: 10.1016/j.tws.2012.05.013

Google Scholar

[34] A. Chatterjee, Y. Xiang, C.D. Moen, S.R. Arwade, B.W. Schafer, Towards Quantifying Beneficial System Effects in Cold-Formed Steel Wood-Sheathed Floor Diaphragms, in: Int. Spec. Conf. Cold-Formed Steel Struct., Missouri University of Science and Technology, 2014: p.4.

DOI: 10.1061/(asce)st.1943-541x.0001958

Google Scholar

[35] V. Nikolaidou, P. Latreille, C.A. Rogers, D.G. Lignos, Characterization of cold-formed steel framed / woodsheathed floor and roof diaphragm structures, in: 16th World Conf. Earthquake, 16WCEE 2017, Santiago, Chile, 2017: p.452.

DOI: 10.1061/(asce)st.1943-541x.0001962

Google Scholar

[36] T.H. Miller, T. Pekoz, Behavior of Gypsum‐Sheathed Cold‐Formed Steel Wall Studs, J. Struct. Eng. 120 (1994) 1644–1650. doi: 10. 1061/(ASCE)0733-9445(1994)120: 5(1644).

DOI: 10.1061/(asce)0733-9445(1994)120:5(1644)

Google Scholar

[37] R.L. Serrette, J. Encalada, M. Juadines, H. Nguyen, Static Racking Behavior of Plywood, OSB, Gypsum, and FiberBond Walls with Metal Framing, J. Struct. Eng. 123 (1997) 1079–1086. doi: 10. 1061/(ASCE)0733-9445(1997)123: 8(1079).

DOI: 10.1061/(asce)0733-9445(1997)123:8(1079)

Google Scholar

[38] L.A. Fülöp, D. Dubina, Design Criteria for Seam and Sheeting-to-Framing Connections of Cold-Formed Steel Shear Panels, J. Struct. Eng. 132 (2006) 582–590. doi: 10. 1061/(ASCE)0733-9445(2006)132: 4(582).

DOI: 10.1061/(asce)0733-9445(2006)132:4(582)

Google Scholar

[39] J. Lange, B. Naujoks, Behaviour of cold-formed steel shear walls under horizontal and vertical loads, Thin-Walled Struct. 44 (2006) 1214–1222. doi: 10. 1016/j. tws. 2007. 01. 007.

DOI: 10.1016/j.tws.2007.01.007

Google Scholar

[40] M. Nithyadharan, V. Kalyanaraman, Experimental study of screw connections in CFS-calcium silicate board wall panels, Thin-Walled Struct. 49 (2011) 724–731. doi: 10. 1016/j. tws. 2011. 01. 004.

DOI: 10.1016/j.tws.2011.01.004

Google Scholar

[41] M. Casafont, A. Arnedo, F. Roure, A. Rodríguez-Ferran, Experimental Testing of Joints for Seismic Design of Lightweight Structures. Part 1: Screwed Joints in Straps, Thin-Walled Struct. 44 (2006) 197–210. doi: 10. 1016/j. tws. 2006. 04. 006.

DOI: 10.1016/j.tws.2006.01.002

Google Scholar

[42] M. Casafont, A. Arnedo, F. Roure, A. Rodríguez-Ferran, Experimental testing of joints for seismic design of lightweight structures. Part 2: Bolted joints in straps, Thin-Walled Struct. 44 (2006) 677–691. doi: 10. 1016/j. tws. 2006. 04. 006.

DOI: 10.1016/j.tws.2006.04.006

Google Scholar

[43] L.C.M. Vieira, B.W. Schafer, Lateral stiffness and strength of sheathing braced cold-formed steel stud walls, Eng. Struct. 37 (2012) 205–213. doi: 10. 1016/j. engstruct. 2011. 12. 029.

DOI: 10.1016/j.engstruct.2011.12.029

Google Scholar

[44] K.D. Peterman, N. Nakata, B.W. Schafer, Hysteretic characterization of cold-formed steel stud-to-sheathing connections, J. Constr. Steel Res. 101 (2014) 254–264. doi: 10. 1016/j. jcsr. 2014. 05. 019.

DOI: 10.1016/j.jcsr.2014.05.019

Google Scholar

[45] S. Swensen, G.G. Deierlein, E. Miranda, Behavior of Screw and Adhesive Connections to Gypsum Wallboard in Wood and Cold-Formed Steel-Framed Wallettes, J. Struct. Eng. 142 (2016) E4015002. doi: 10. 1061/(ASCE)ST. 1943-541X. 0001307.

DOI: 10.1061/(asce)st.1943-541x.0001307

Google Scholar

[46] J. Ye, X. Wang, M. Zhao, Experimental study on shear behavior of screw connections in CFS sheathing, J. Constr. Steel Res. 121 (2016) 1–12. doi: 10. 1016/j. jcsr. 2015. 12. 027.

DOI: 10.1016/j.jcsr.2015.12.027

Google Scholar

[47] W. Chen, J. Ye, T. Chen, Design of Cold-Formed Steel Screw Connections with Gypsum Sheathing at Ambient and Elevated Temperatures, Appl. Sci. 6 (2016) 248. doi: 10. 3390/app6090248.

DOI: 10.3390/app6090248

Google Scholar

[48] R. Serrette, D. Nolan, Wood Structural Panel to Cold-Formed Steel Shear Connections with Pneumatically Driven Knurled Steel Pins, Pract. Period. Struct. Des. Constr. 22 (2017) 4017002. doi: 10. 1061/(ASCE)SC. 1943-5576. 0000321.

DOI: 10.1061/(asce)sc.1943-5576.0000321

Google Scholar

[49] L. Fülöp, D. Dubina, Performance of wall-stud cold-formed shear panels under monotonic and cyclic loading: Part II: Numerical modelling and performance analysis, Thin-Walled Struct. 42 (2004) 339–349. doi: 10. 1016/S0263-8231(03)00064-8.

DOI: 10.1016/s0263-8231(03)00064-8

Google Scholar

[50] Y. Telue, M. Mahendran, Behaviour and design of cold-formed steel wall frames lined with plasterboard on both sides, Eng. Struct. 26 (2004) 567–579. doi: 10. 1016/j. engstruct. 2003. 12. 003.

DOI: 10.1016/j.engstruct.2003.12.003

Google Scholar

[51] N. Pastor, A. Rodríguez-Ferran, Hysteretic modelling of x-braced shear walls, Thin-Walled Struct. 43 (2005) 1567–1588. doi: 10. 1016/j. tws. 2005. 06. 010.

DOI: 10.1016/j.tws.2005.06.010

Google Scholar

[52] T. -W. Kim, J. Wilcoski, D.A. Foutch, Analysis of Measured and Calculated Response of a Cold-formed Steel Shear Panel Structure, J. Earthq. Eng. 11 (2007) 67–85. doi: 10. 1080/13632460601031862.

DOI: 10.1080/13632460601031862

Google Scholar

[53] X. Zhou, Y. He, Y. Shi, T. Zhou, Y. Liu, Experiment and FE analysis on shear resistance of cold-formed steel stud assembled wall in residential structure, 2010. doi: 10. 18057/IJASC. 2010. 6. 3. 7.

Google Scholar

[54] M. Zeynalian, H.R. Ronagh, A numerical study on seismic characteristics of knee-braced cold formed steel shear walls, Thin Walled Struct. 49 (2011) 1517–1525. doi: 10. 1016/j. tws. 2011. 07. 012.

DOI: 10.1016/j.tws.2011.07.012

Google Scholar

[55] J. Martínez-Martínez, L. Xu, Simplified nonlinear finite element analysis of buildings with CFS shear wall panels, J. Constr. Steel Res. 67 (2011) 565–575. doi: 10. 1016/j. jcsr. 2010. 12. 005.

DOI: 10.1016/j.jcsr.2010.12.005

Google Scholar

[56] M. Zeynalian, H.R. Ronagh, A numerical study on seismic performance of strap-braced cold-formed steel shear walls, Thin Walled Struct. 60 (2012) 229–238. doi: 10. 1016/j. tws. 2012. 05. 012.

DOI: 10.1016/j.tws.2012.05.012

Google Scholar

[57] J. Leng, B.W. Schafer, S.G. Buonopane, Seismic Computational Analysis of CFS-NEES Building, in: Int. Spec. Conf. Cold-Formed Steel Struct., 2012: p.4.

Google Scholar

[58] I. Shamim, C. a. Rogers, Steel sheathed/CFS framed shear walls under dynamic loading: Numerical modelling and calibration, Thin-Walled Struct. 71 (2013) 57–71. doi: 10. 1016/j. tws. 2013. 05. 007.

DOI: 10.1016/j.tws.2013.05.007

Google Scholar

[59] M. Nithyadharan, V. Kalyanaraman, Modelling hysteretic behaviour of cold-formed steel wall panels, Eng. Struct. 46 (2013) 643–652. doi: 10. 1016/j. engstruct. 2012. 08. 022.

DOI: 10.1016/j.engstruct.2012.08.022

Google Scholar

[60] S. Hatami, A. Rahmani, A. Parvaneh, H.R. Ronagh, A PARAMETRIC STUDY ON SEISMIC CHARACTERISTICS OF COLD-FORMED STEEL SHEAR WALLS BY FINITE ELEMENT MODELING, Adv. Steel Constr. 10 (2014) 53–71.

DOI: 10.18057/ijasc.2014.10.1.4

Google Scholar

[61] A. Mirzaei, R.H. Sangree, K. Velchev, G. Comeau, N. Balh, C.A. Rogers, et al., Seismic capacity-based design of narrow strap-braced cold-formed steel walls, J. Constr. Steel Res. 115 (2015) 81–91. doi: 10. 1016/j. jcsr. 2015. 08. 023.

DOI: 10.1016/j.jcsr.2015.08.023

Google Scholar

[62] S.G. Buonopane, G. Bian, T.H. Tun, B.W. Schafer, Computationally efficient fastener-based models of cold-formed steel shear walls with wood sheathing, J. Constr. Steel Res. 110 (2015) 137–148. doi: 10. 1016/j. jcsr. 2015. 03. 008.

DOI: 10.1016/j.jcsr.2015.03.008

Google Scholar

[63] M. Gerami, M. Lotfi, R. Nejat, Inelastic behavior of cold-formed braced walls under monotonic and cyclic loading, Int. J. Adv. Struct. Eng. 7 (2015) 181–209. doi: 10. 1007/s40091-015-0091-8.

DOI: 10.1007/s40091-015-0091-8

Google Scholar

[64] S. Kechidi, N. Bourahla, Deteriorating hysteresis model for cold-formed steel shear wall panel based on its physical and mechanical characteristics, Thin-Walled Struct. 98 (2016) 421–430. doi: 10. 1016/j. tws. 2015. 09. 022.

DOI: 10.1016/j.tws.2015.09.022

Google Scholar

[65] L. Fiorino, S. Shakeel, V. Macillo, R. Landolfo, Seismic response of CFS shear walls sheathed with nailed gypsum panels: Numerical modelling, Thin-Walled Struct. (2017). doi: 10. 1016/j. tws. 2017. 10. 028.

DOI: 10.1016/j.tws.2017.10.028

Google Scholar

[66] G. Comeau, K. Velchev, C.A. Rogers, Development of seismic force modification factors for cold-formed steel strap braced walls, Can. J. Civ. Eng. (2010) 236–249. doi: 10. 1139/L09-153.

DOI: 10.1139/l09-153

Google Scholar

[67] M. Lee, D.A. Foutch, Performance evaluation of cold-formed steel braced frames designed under current U.S. seismic design code, Int. J. Steel Struct. 10 (2010) 305–316. doi: 10. 1007/BF03215839.

DOI: 10.1007/bf03215839

Google Scholar

[68] S. Kechidi, N. Bourahla, J. Miguel, Seismic design procedure for cold-formed steel sheathed shear wall frames : Proposal and evaluation, 128 (2017) 219–232.

DOI: 10.1016/j.jcsr.2016.08.018

Google Scholar

[69] I. Shamim, C.A. Rogers, Numerical evaluation: AISI S400 steel-sheathed CFS framed shear wall seismic design method, Thin-Walled Struct. 95 (2015) 48–59. doi: 10. 1016/j. tws. 2015. 06. 011.

DOI: 10.1016/j.tws.2015.06.011

Google Scholar

[70] S.A. Freeman, Racking tests of high-rise building partitions, J. Struct. Div. Proc. Am. Soc. Civ. Eng. (1977) 1673–1685.

DOI: 10.1061/jsdeag.0004702

Google Scholar

[71] T. -H. Lee, M. Kato, T. Matsumiya, K. Suita, M. Nakashima, Seismic performance evaluation of non-structural components: drywall partitions, Earthq. Eng. Struct. Dyn. 36 (2007) 367–382. doi: 10. 1002/eqe. 638.

DOI: 10.1002/eqe.638

Google Scholar

[72] J.I. Restrepo, A.M. Bersofsky, Performance characteristics of light gage steel stud partition walls, Thin-Walled Struct. 49 (2011) 317–324.

DOI: 10.1016/j.tws.2010.10.001

Google Scholar

[73] R. Retamales, R. Davies, G. Mosqueda, A. Filiatrault, Experimental seismic fragility of cold-formed steel framed gypsum partition walls, J. Struct. Eng. 139 (2013) 1285–1293.

DOI: 10.1061/(asce)st.1943-541x.0000657

Google Scholar

[74] A.S. Tasligedik, S. Pampanin, A. Palermo, Low damage seismic solutions for non-structural drywall partitions, Bull. Earthq. Eng. 13(2015) 1029–1050. doi: 10. 1007/s10518-014-9654-5.

DOI: 10.1007/s10518-014-9654-5

Google Scholar

[75] C. Petrone, G. Magliulo, P. Lopez, G. Manfredi, Seismic fragility of plasterboard partitions via in-plane quasi-static tests, Earthq. Eng. Struct. Dyn. 44 (2015) 2589–2606. doi: 10. 1002/eqe. 2600.

DOI: 10.1002/eqe.2600

Google Scholar

[76] Q. Peck, N. Rogers, R. Serrette, Cold-Formed Steel Framed Gypsum Shear Walls: In-Plane Response, J. Struct. Eng. 138 (2012) 932–941. doi: 10. 1061/(ASCE)ST. 1943-541X. 0000521.

DOI: 10.1061/(asce)st.1943-541x.0000521

Google Scholar

[77] S. Swensen, G.G. Deierlein, E. Miranda, Behavior of Screw and Adhesive Connections to Gypsum Wallboard in Wood and Cold-Formed Steel-Framed Wallettes, J. Struct. Eng. 142 (2016) E4015002. doi: 10. 1061/(ASCE)ST. 1943-541X. 0001307.

DOI: 10.1061/(asce)st.1943-541x.0001307

Google Scholar

[78] G. Magliulo, C. Petrone, V. Capozzi, G. Maddaloni, P. Lopez, G. Manfredi, Seismic performance evaluation of plasterboard partitions via shake table tests, Bull. Earthq. Eng. 12 (2014) 1657–1677. doi: 10. 1007/s10518-013-9567-8.

DOI: 10.1007/s10518-013-9567-8

Google Scholar

[79] C. Petrone, G. Magliulo, G. Manfredi, Shake table tests on standard and innovative temporary partition walls, Earthq. Eng. Struct. Dyn. 46 (2017) 1599–1624. doi: 10. 1002/eqe. 2872.

DOI: 10.1002/eqe.2872

Google Scholar

[80] H. Badillo-Almaraz, A.S. Whittaker, A.M. Reinhorn, Seismic Fragility of Suspended Ceiling Systems, Earthq. Spectra. 23 (2007) 21–40. doi: 10. 1193/1. 2357626.

DOI: 10.1193/1.2357626

Google Scholar

[81] G. Magliulo, V. Pentangelo, G. Maddaloni, V. Capozzi, C. Petrone, P. Lopez, et al., Shake table tests for seismic assessment of suspended continuous ceilings, Bull. Earthq. Eng. 10 (2012) 1819–1832. doi: 10. 1007/s10518-012-9383-6.

DOI: 10.1007/s10518-012-9383-6

Google Scholar

[82] X. Wang, E. Pantoli, T.C. Hutchinson, J.I. Restrepo, R.L. Wood, M.S. Hoehler, et al., Seismic Performance of Cold-Formed Steel Wall Systems in a Full-Scale Building, J. Struct. Eng. 141 (2015) 4015014. doi: 10. 1061/(ASCE)ST. 1943-541X. 0001245.

DOI: 10.1061/(asce)st.1943-541x.0001245

Google Scholar

[83] C. Jenkins, S. Soroushian, E. Rahmanishamsi, E. Manos, Maragakis, Experimental Fragility Analysis of Cold-Formed Steel-Framed Partition Wall Systems, in: Struct. Congr. 2015, American Society of Civil Engineers, Reston, VA, 2015: p.1760.

DOI: 10.1061/9780784479117.152

Google Scholar

[84] C. Petrone, G. Magliulo, G. Manfredi, Mechanical Properties of Plasterboards: Experimental Tests and Statistical Analysis, J. Mater. Civ. Eng. 28 (2016) 4016129. doi: 10. 1061/(ASCE)MT. 1943-5533. 0001630.

DOI: 10.1061/(asce)mt.1943-5533.0001630

Google Scholar

[85] E. Rahmanishamsi, S. Soroushian, E. Manos, Maragakis, Evaluation of the out-of-plane behavior of stud-to-track connections in nonstructural partition walls, Thin-Walled Struct. 103 (2016) 211–224. doi: 10. 1016/j. tws. 2016. 02. 018.

DOI: 10.1016/j.tws.2016.02.018

Google Scholar

[86] CEN, EN 1993-1-3 Eurocode 3: Design of steel structures-Part 1-3: General rules-Supplementary rules for cold-formed members and sheeting, European Committee for Standardization, Brussels, (2006).

DOI: 10.3403/02338401

Google Scholar

[87] AISI-S100-16 North American Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute (AISI), (2016).

Google Scholar

[88] AUS/NZS 4600. Cold-formed steel structures, Australian/ New Zealand standard, Sydney (NSW, Australia), (2005).

Google Scholar

[89] SEI/ASCE, ASCE 7-10 Minimim Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, Virginia, (2010).

DOI: 10.1061/9780784412916.err

Google Scholar

[90] National Building Code of Canada, National Research Council of Canada (NRCC), Ottawa, ON, Canada, (2005).

Google Scholar

[91] AISI-S400-15 North American Standard for Seismic Design of Cold formed Steel Structural Systems, American Iron and Steel Institute (AISI), (2015).

Google Scholar

[92] AS1170. 4 Minimum Design Load on Structures, Part 4, Earthquake Load, Standards Association of Australia, Sydney (NSW, Australia), (1993).

Google Scholar

[93] CEN, EN 1998-1 Eurocode 8: Design of Structures for earthquake resistance-Part 1: General rules, seismic actions and rules for buildings, European Committee for Standardization, Brussels, (2004).

DOI: 10.3403/03244372

Google Scholar

[94] Uniform Building Code, International Conference on Building Officials, Whittier, California, USA, (1967).

Google Scholar

[95] ASCE 41-13 Seismic Evaluation and Upgrade of Existing Buildings, American Society of Civil Engineers, Reston, VA, (2013).

Google Scholar

[96] R. Landolfo, G. Della Corte, L. Fiorino, Shear Behavior of Connections between Cold-Formed Steel Profiles and Wood or Gypsum-Based Panels: An Experimental Investigation, in: Struct. Congr. 2006, American Society of Civil Engineers, Reston, VA, 2006: p.1.

DOI: 10.1061/40889(201)48

Google Scholar

[97] L. Fiorino, G. Della Corte, R. Landolfo, Experimental tests on sheathing-to-stud screw connections, in: Proc. Prog. Steel, Compos. Alum. Struct. (ICMS 2006), Rzeszów, Poland, (2006).

Google Scholar

[98] L. Fiorino, G. Della Corte, R. Landolfo, Experimental tests on typical screw connections for cold-formed steel housing, Eng. Struct. 29 (2007) 1761–1773. doi: 10. 1016/j. engstruct. 2006. 09. 006.

DOI: 10.1016/j.engstruct.2006.09.006

Google Scholar

[99] L. Fiorino, O. Iuorio, R. Landolfo, Experimental response of connections between cold-formed steel profile and cement-based panel, in: Proc. 19th Int. Spec. Conf. Cold-Formed Steel Struct., Missouri University of Science and Technology, St. Louis, MO, 2008: p.603.

DOI: 10.1201/9780203861592.ch133

Google Scholar

[100] L. Fiorino, V. Macillo, R. Landolfo, Experimental characterization of quick mechanical connecting systems for cold-formed steel structures, Adv. Struct. Eng. 20 (2017) 1098–1110. doi: 10. 1177/1369433216671318.

DOI: 10.1177/1369433216671318

Google Scholar

[101] L. Fiorino, T. Pali, B. Bucciero, V. Macillo, M. Teresa Terracciano, R. Landolfo, Experimental study on screwed connections for sheathed CFS structures with gypsum or cement based panels, Thin-Walled Struct. 116 (2017).

DOI: 10.1016/j.tws.2017.03.031

Google Scholar

[102] G. Della Corte, L. Fiorino, D.G. Lorenzo, R. Landolfo, Seismic performance of steel stud shear walls: planning of a testing program, in: Proc. 4th Int. Conf. Behav. Steel Struct. Seism. Areas (STESSA 2003)., Naples, Italy., 2003: p.153–159.

DOI: 10.1201/9780203738290

Google Scholar

[103] R. Landolfo, L. Fiorino, G. Della Corte, Seismic performance of Sheathed Cold-Formed Shear Walls, in: 17th Int. Spec. Conf. Cold-Formed Steel Struct., Orlandao, FL, USA, 2004: p.625–638.

DOI: 10.1061/(asce)0733-9445(2006)132:4(558)

Google Scholar

[104] L. Fiorino, G. Della Corte, R. Landolfo, Seismic response of light-gauge steel stick-built constructions: summary of a research project, in: S. et al. (eds. ). (Ed. ), COST C12 Final Conf. - Improv. Build. Struct. Qual. by New Technol., Taylor & Francis Group Publisher, Innsbruck, Austria, 2005: p.105.

DOI: 10.1201/9780203970843.ch11

Google Scholar

[105] R. Landolfo, L. Fiorino, G. Della Corte, Seismic Behavior of Sheathed Cold-Formed Structures: Physical Tests, J. Struct. Eng. 132 (2006) 570–581. doi: 10. 1061/(ASCE)0733-9445(2006)132: 4(570).

DOI: 10.1061/(asce)0733-9445(2006)132:4(570)

Google Scholar

[106] O. Iuorio, L. Fiorino, R. Landolfo, Testing CFS structures: The new school BFS in Naples, Thin-Walled Struct. 84 (2014) 275–288. doi: 10. 1016/j. tws. 2014. 06. 006.

DOI: 10.1016/j.tws.2014.06.006

Google Scholar

[107] L. Fiorino, V. Macillo, M.T. Terracciano, T. Pali, B. Bucciero, R. Landolfo, Experimental tests for the seismic response evaluation of cold-formed steel shear walls sheathed with nailed gypsum-based panels, in: 23th Int. Spec. Conf. Cold-Formed Steel Struct., Baltimore, MD, USA, 2016: p.807.

DOI: 10.1002/cepa.336

Google Scholar

[108] V. Macillo, L. Fiorino, Thin-Walled Structures Seismic response of CFS shear walls sheathed with nailed gypsum panels : Experimental tests, 120 (2017) 161–171. doi: 10. 1016/j. tws. 2017. 08. 022.

DOI: 10.1016/j.tws.2017.08.022

Google Scholar

[109] V. Macillo, B. Bucciero, M.T. Terracciano, T. Pali, L. Fiorino, R. Landolfo, Shaking table tests on cold-formed steel building sheathed with gypsum panels, Ce/papers. 1 (2017) 2847–2856. doi: 10. 1002/cepa. 336.

DOI: 10.1002/cepa.336

Google Scholar

[110] L. Fiorino, V. Macillo, R. Landolfo, Shake table tests of a full-scale two-story sheathing-braced cold-formed steel building, Eng. Struct. 151 (2017) 633–647. doi: 10. 1016/j. engstruct. 2017. 08. 056.

DOI: 10.1016/j.engstruct.2017.08.056

Google Scholar

[111] O. Iuorio, V. Macillo, M.T. Terracciano, T. Pali, L. Fiorino, R. Landolfo, Evaluation of seismic performance of light gauge steel walls braced with flat straps, in: 22th Int. Spec. Conf. Cold-Formed Steel Struct., St. Louis, MO, 2014: p.841–855.

DOI: 10.1016/j.tws.2014.09.008

Google Scholar

[112] O. Iuorio, V. Macillo, M.T. Terracciano, T. Pali, L. Fiorino, R. Landolfo, Seismic response of Cfs strap-braced stud walls: Experimental investigation, Thin-Walled Struct. 85 (2014) 466–480. doi: 10. 1016/j. tws. 2014. 09. 008.

DOI: 10.1016/j.tws.2014.09.008

Google Scholar

[113] L. Fiorino, O. Iuorio, V. Macillo, M.T. Terracciano, T. Pali, R. Landolfo, Seismic Design Method for CFS Diagonal Strap-Braced Stud Walls: Experimental Validation, J. Struct. Eng. 142 (2016) 4015154. doi: 10. 1061/(ASCE)ST. 1943-541X. 0001408.

DOI: 10.1061/(asce)st.1943-541x.0001408

Google Scholar

[114] Terracciano M. T., B. B., M. V., P. T., F. L., L. R., Strap-braced CFS walls: experimental characterization of the seismic response, in: V. (eds. ). Dubina, D., Ungureanu (Ed. ), Int. Colloq. Stab. Ductility Steel Struct., ECCSEuropean Convention for Constructional Steelwork., Timisoara, Romania, 2016: p.835.

DOI: 10.1016/j.jcsr.2016.07.027

Google Scholar

[115] L. Fiorino, M.T. Terracciano, R. Landolfo, Experimental investigation of seismic behaviour of low dissipative CFS strap-braced stud walls, J. Constr. Steel Res. 127 (2016) 92–107. doi: 10. 1016/j. jcsr. 2016. 07. 027.

DOI: 10.1016/j.jcsr.2016.07.027

Google Scholar

[116] M.T. Terracciano, B. Bucciero, T. Pali, V. Macillo, L. Fiorino, R. Landolfo, Design and numerical simulation of shake-table tests of CFS strap-braced stud structures, in: XXVI Congr. C.T.A. Coll. Dei Tec. dell'Acciaio., Venezia, Italy, 2017: p.631.

DOI: 10.4028/www.scientific.net/kem.763.432

Google Scholar

[117] G. Della Corte, L. Fiorino, R. Landolfo, Seismic Behavior of Sheathed Cold-Formed Structures: Numerical Study, J. Struct. Eng. 132 (2006) 558–569. doi: 10. 1061/(ASCE)0733-9445(2006)132: 4(558).

DOI: 10.1061/(asce)0733-9445(2006)132:4(558)

Google Scholar

[118] L. Fiorino, G. Della Corte, R. Landolfo, Seismic Response of Steel Frame / Panel Shear Walls: Modelling based on Screw Connection Tests., in: M. & W. (eds. ). (Ed. ), Proc. 5th Int. Conf. Behav. Steel Struct. Seism. Areas (STESSA 2006), Taylor & Francis Group Publisher, Yokohama, Japan., 2006: p.503.

Google Scholar

[119] L. Fiorino, O. Iuorio, L. Landolfo, A Specific Procedure for the Seismic Design of Cold-Formed Steel Housing, in: Proc. 5th Int. Conf. Adv. Steel Struct. (ICASS 2007), Singapore, 2007: p.298–305.

DOI: 10.1016/j.tws.2009.02.004

Google Scholar

[120] L. Fiorino, O. Iuorio, R. Landolfo, Seismic analysis of sheathing-braced cold-formed steel structures, in: R. & S. (eds. ). . Mazzolani (Ed. ), Proc. 6th Int. Conf. Behav. Steel Struct. Seism. Areas (STESSA 2009)., Taylor & Francis Group Publisher, Philadelphia, USA, 2009: p.913.

DOI: 10.1201/9780203861592.ch133

Google Scholar

[121] L. Fiorino, O. Iuorio, M. V., R. Landolfo, Seismic response of sheathed cold-formed steel structures under catastrophic events, in: M. (ed. ). (Ed. ), Proc. COST Action C26 Final Conf. – Urban Habitat Constr. under Catastrophic Events., Taylor & Francis Group Publisher, Naples, Italy, 2010: p.377.

DOI: 10.1201/b10559-3

Google Scholar

[122] L. Fiorino, O. Iuorio, R. Landolfo, Sheathed cold-formed steel housing: A seismic design procedure, Thin-Walled Struct. 47 (2009) 919–930. doi: 10. 1016/j. tws. 2009. 02. 004.

DOI: 10.1016/j.tws.2009.02.004

Google Scholar

[123] R. Landolfo, L. Fiorino, O. Iuorio, A Specific Procedure for Seismic Design of Cold-Formed Steel Housing., Adv. Steel Constr. 6 (2010) 603–618.

DOI: 10.1016/j.tws.2009.02.004

Google Scholar

[124] O. Iuorio, L. Fiorino, V. Macillo, M.T. Terracciano, R. Landolfo, The influence of the aspect ratio on the lateral response of sheathed cold formed steel walls., in: Proc. 21th Int. Spec. Conf. Cold-Formed Steel Struct., St. Louis, MO, 2012: p.739.

DOI: 10.1002/cepa.336

Google Scholar

[125] L. Fiorino, O. Iuorio, R. Landolfo, Seismic analysis of sheathing-braced cold-formed steel structures, Eng. Struct. 34 (2012) 538–547. doi: 10. 1016/j. engstruct. 2011. 09. 002.

DOI: 10.1016/j.engstruct.2011.09.002

Google Scholar

[126] L. Fiorino, O. Iuorio, V. MacIllo, R. Landolfo, Performance-based design of sheathed CFS buildings in seismic area, Thin-Walled Struct. 61 (2012) 248–257. doi: 10. 1016/j. tws. 2012. 03. 022.

DOI: 10.1016/j.tws.2012.03.022

Google Scholar

[127] L. Fiorino, O. Iuorio, R. Landolfo, Behaviour Factor Evaluation of Sheathed Cold-Formed Steel Structures., Adv. Steel Constr. - an Int. Journal. 9 (2013) 26–40. doi: 10. 18057/IJASC. 2013. 9. 1.

DOI: 10.1201/9780203861592.ch133

Google Scholar

[128] V. Macillo, O. Iuorio, M.T. Terracciano, L. Fiorino, R. Landolfo, Seismic response of Cfs strap-braced stud walls: Theoretical study, Thin-Walled Struct. 85 (2014) 301–312. doi: 10. 1016/j. tws. 2014. 09. 006.

DOI: 10.1016/j.tws.2014.09.006

Google Scholar

[129] L. Fiorino, S. Shakeel, V. Macillo, R. Landolfo, Behaviour factor (q) evaluation the CFS braced structures according to FEMA P695, J. Constr. Steel Res. 138 (2017) 324–339. doi: 10. 1016/j. jcsr. 2017. 07. 014.

DOI: 10.1016/j.jcsr.2017.07.014

Google Scholar

[130] O. Iuorio, L. Fiorino, V. Macillo, R. Landolfo, Seismic design and experimental tests of an Italian cold formed steel structure, in: M. & H. (eds. ). (Ed. ), 7th Int. Conf. Behav. Steel Struct. Seism. Areas (STESSA 2012)., Taylor & Francis Group Publisher, Santiago, Chile, 2012: p.331.

DOI: 10.1201/b11396-53

Google Scholar

[131] L. Fiorino, O. Iuorio, R. Landolfo, Designing CFS structures: The new school bfs in naples, Thin-Walled Struct. 78 (2014) 37–47. doi: 10. 1016/j. tws. 2013. 12. 008.

DOI: 10.1016/j.tws.2013.12.008

Google Scholar

[132] L. Fiorino, D. Herfurth, H.U. Hummel, O. Iuorio, R. Landolfo, V. Macillo, et al., Out-of-plane seismic design by testing of Knauf drywall partitions., in: Q.X. (eds. ). Mazzolani F.M., Li G. -Q., Chen S. (Ed. ), Proc. 8th Int. Conf. Behav. Steel Struct. Seism. Areas, Architecture & Building press., 2015: p.1566.

DOI: 10.1002/eqe.3031

Google Scholar

[133] T. Pali, B. Bucciero, M.T. Terracciano, V. Macillo, L. Fiorino, R. Landolfo, In-plane quasi-static cyclic tests on lightweight steel drywall non-structural partition walls, Ce/papers. 1 (2017) 2857–2866. doi: 10. 1002/cepa. 337.

DOI: 10.1002/cepa.337

Google Scholar

[134] B. Bucciero, T. Pali, S. Shakeel, M.T. Terracciano, V. Macillo, L. Fiorino, et al., Seismic behaviour of non structural systems in CFS: characterization of seismic response through shake-table tests, in: XXVI Congr. C.T.A. Coll. Dei Tec. dell'Acciaio., Venezia, Italy, 2017: p.623.

DOI: 10.4028/www.scientific.net/kem.763.584

Google Scholar

[135] L. Fiorino, V. Macillo, R. Landolfo, Experimental characterization of quick mechanical connecting systems for cold-formed steel structures, Adv. Struct. Eng. 20 (2017) 1098–1110. doi: 10. 1177/1369433216671318.

DOI: 10.1177/1369433216671318

Google Scholar

[136] L. Fiorino, M.T. Terracciano, R. Landolfo, Experimental investigation of seismic behaviour of low dissipative CFS strap-braced stud walls, J. Constr. Steel Res. 127 (2016) 92–107. doi: 10. 1016/j. jcsr. 2016. 07. 027.

DOI: 10.1016/j.jcsr.2016.07.027

Google Scholar

[137] International Conference of Building Officials, ICBO AC 156 Acceptance Criteria for the Seismic Qualification of Nonstructural Components., ICBO Evaluation Service, Inc, Whittier, California, USA, (2000).

Google Scholar