[1]
American Institute of Steel Construction (2016), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago.
Google Scholar
[2]
G. Brando, F. D'Agostino, and G. De Matteis (2013), Experimental tests of a new hysteretic damper made of buckling inhibited shear panels, Mater. Struct., Vol (46), no. 12, p.2121–2133.
DOI: 10.1617/s11527-013-0040-6
Google Scholar
[3]
R. W. K. Chan and F. Albermani (2008), Experimental study of steel slit damper for passive energy dissipation, Eng. Struct., Vol (30), no. 4, p.1058–1066.
DOI: 10.1016/j.engstruct.2007.07.005
Google Scholar
[4]
R. W. K. Chan, F. Albermani, and S. Kitipornchai (2013), Experimental study of perforated yielding shear panel device for passive energy dissipation, J. Constr. Steel Res., Vol (91), p.14–25.
DOI: 10.1016/j.jcsr.2013.08.013
Google Scholar
[5]
R. W. K. Chan, F. Albermani, and M. S. Williams (2009), Evaluation of yielding shear panel device for passive energy dissipation, J. Constr. Steel Res., Vol (65), no. 2, p.260–268.
DOI: 10.1016/j.jcsr.2008.03.017
Google Scholar
[6]
G. R. Lewis (2010), Replaceable Shear and Flexural Links for the Linked Column Frame System,. Master thesis, Department of Civl and Environment Engineering, Portland State University.
Google Scholar
[7]
G. Li and H. N. Li (2013), Experimental study and application in steel structure of 'dual functions' metallic damper, Adv. Steel Constr., Vol (9), no. 3, p.247–258.
Google Scholar
[8]
J. Li, Y. Tang, and X. Liu (2015), Research on Dissipation and Fatigue Capacity of Nonstiffener Shear Panel Dampers, Adv. Civ. Eng., Vol (2015).
DOI: 10.1155/2015/191359
Google Scholar
[9]
Z. Li, F. Albermani, R. W. K. Chan, and S. Kitipornchai (2011), Pinching hysteretic response of yielding shear panel device, Eng. Struct., Vol (33), no. 3, p.993–1000.
DOI: 10.1016/j.engstruct.2010.12.021
Google Scholar
[10]
X. Ma, E. Borchers, H. Krawinkler, and G. Deierlein (2011), Design and Behavior of Steel Shear Plates with Openings as Energy Dissipating Fuses, Report no. 173, Department of Civil and Environement Engineering, Stanford University.
Google Scholar
[11]
D. R. Sahoo, T. Singhal, S. S. Taraithia, and A. Saini (2015), Cyclic behavior of shear-and-flexural yielding metallic dampers, J. Constr. Steel Res., Vol (114), p.247–257.
DOI: 10.1016/j.jcsr.2015.08.006
Google Scholar
[12]
M. T. Stephens (2011), Numerical and Experimental Analysis of Composite Sandwich Links for the LCF System, Civil and Environmental Engineering, Portland State University.
Google Scholar
[13]
M. Symans, F. Charney, A. Whittaker, M. Constantinou, C. Kircher, M. Johnson, and R. McNamara (2008), Energy dissipation systems for seismic applications: current practice and recent developments, J. Struct. Eng., Vol (134), no. 1, p.3–21.
DOI: 10.1061/(asce)0733-9445(2008)134:1(3)
Google Scholar
[14]
D. R. Teruna, T. A. Majid, and B. Budiono (2015), Experimental study of hysteretic steel damper for energy dissipation capacity, Adv. Civ. Eng., Vol (2015).
DOI: 10.1155/2015/631726
Google Scholar
[15]
H. Valizadeh, M. Sheidaii, and H. Showkati (2012), Experimental investigation on cyclic behavior of perforated steel plate shear walls, J. Constr. Steel Res., Vol (70), p.308–316.
DOI: 10.1016/j.jcsr.2011.09.016
Google Scholar
[16]
C. Zhang, Z. Zhang, and J. Shi (2012), Development of high deformation capacity low yield strength steel shear panel damper, J. Constr. Steel Res., Vol (75), p.116–130.
DOI: 10.1016/j.jcsr.2012.03.014
Google Scholar
[17]
J. Zheng, A. Li, and T. Guo (2015), Analytical and experimental study on mild steel dampers with non-uniform vertical slits, Earthq. Eng. Eng. Vib., Vol (14), no. 1, p.111–123.
DOI: 10.1007/s11803-015-0010-9
Google Scholar