[1]
Heyman, J., The safety of masonry arches. Int. J. Mech. Sciences. Vol. 11(2), pp.363-385, (1969).
Google Scholar
[2]
Baratta, A., Corbi I., Corbi, O., Stability of evolutionary brittle-tension 2D solids with heterogeneous resistance, J. Computers and Structures, Vol. 174, pp.133-138, doi: 10. 1016/j. compstruc. 2015. 10. 004, (2016).
DOI: 10.1016/j.compstruc.2015.10.004
Google Scholar
[3]
Corbi, I., Corbi, O., Theorems for masonry solids with brittle time-decaying tensile limit strength, J. Acta Mechanica, Vol. 228(3), pp.837-849, doi: 10. 1007/s00707-016-1722-2, (2017).
DOI: 10.1007/s00707-016-1722-2
Google Scholar
[4]
Corbi, I., Corbi, O., Analysis of bi-dimensional solids with internal unilateral constraint coupled to structural elements with different degree of connection, J. Acta Mechanica, Vol. 228(2), pp.607-616, doi: 10. 1007/s00707-016-1723-1, (2016).
DOI: 10.1007/s00707-016-1723-1
Google Scholar
[5]
Baratta, A., Corbi, I., Corbi, O., Analytical Formulation of Generalized Incremental Theorems for 2D No-Tension Solids, J. Acta Mechanica, Vol. 226(9), pp.2849-2859, doi: 10. 1007/s00707-015-1350-2, (2015).
DOI: 10.1007/s00707-015-1350-2
Google Scholar
[6]
Baratta, A., Corbi, O., Heterogeneously Resistant Elastic-Brittle Solids under Multi-Axial Stress: Fundamental Postulates and Bounding Theorems, J. Acta Mechanica, Vol. 226(6), pp.2077-2087, doi: 10. 1007/s00707-015-1299-1, (2015).
DOI: 10.1007/s00707-015-1299-1
Google Scholar
[7]
Fuller R.B., Synergetics, Explorations in the Geometry of Thinking, Collier Macmillan, London, UK, (1975).
Google Scholar
[8]
Motro R., Structural morphology of tensegrity systems, International Journal of Space Structures, Vol. 11, pp.233-240, (1996).
DOI: 10.1177/026635119601-228
Google Scholar
[9]
Saitoh M., Okada A., Tabata H., Study on the structural characteristics of tensegrity truss arch., Proceedings of IASS, Nagoya, Japan, (2001).
Google Scholar
[10]
Zhang J.Y., Ohsaki M., Adaptive force density method form finding problem of tensegrity structures, International Journal of Solids and Structures, Vol. 43, pp.5658-5673, (2006).
DOI: 10.1016/j.ijsolstr.2005.10.011
Google Scholar
[11]
Lewis W.J., The efficiency of the numerical methods for the analysis of the prestressed nets and pin-jointed frame structures, Computers and Structures, Vol. 33, pp.791-800, (2003).
DOI: 10.1016/0045-7949(89)90254-x
Google Scholar
[12]
Guest S., The stiffness of prestressed frameworks: A unifying approach, International Journal of Solids and Structures, Vol. 43, pp.842-854, (2006).
DOI: 10.1016/j.ijsolstr.2005.03.008
Google Scholar
[13]
El-LishaniS. E, Nooshin H., Disney P., Investigating the statical stability of pin- jointed structures using genetic algorithm, International Journal of Spacing Structures, Vol. 20, pp.53-68, (2005).
DOI: 10.1260/0266351054214335
Google Scholar
[14]
Lu J.Y., Luo Y.Z., Li N., An incremental algorithm to trace the non- linear equilibrium paths of pin- jointed structures using the singular value decomposition of the equilibrium matrix, Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 223, pp.881-890, (2009).
DOI: 10.1243/09544100jaero528
Google Scholar
[15]
Adriaenssens S., Block P., Veenendaal D., Willimas C., Shell Structures for Architecture- Form Finding and Optimization, Routledge, London and New York, (2014).
Google Scholar
[16]
Asghar Batthi, M. Advanced Topics in Finite Element Analysis of Structures: With Mathematica and Matlab Computations, Wiley, New York, (2006).
Google Scholar