Seismic Behaviour of Sheathed CFS Buildings: Shake-Table Testing and Numerical Modelling

Article Preview

Abstract:

In the past, the effort of the research was focused on the characterization and modelling of isolated CFS members or parts of building, but this cannot be enough for innovative structure, in which the sheathing panels interact with the steel framing providing the bracing effects against seismic actions. Therefore, in order to evaluate the seismic behaviour of CFS buildings sheathed with gypsum panels, a wide experimental campaign was conducted at University of Naples “Federico II” in the framework of European research project ELISSA (Energy efficient LIghtweight-Sustainable-SAfe steel construction). In particular, a two-storey building was tested on the shaking-table, considering different construction phases. In the first phase, the building included only structural elements and dynamic identification tests were carried out, whereas, in the second phase, the building was completed with all finishing components and it was tested for dynamic identification and under natural ground motions. In addition, a numerical model able to simulate the dynamic/earthquake response of the whole building, considering also the effect of finishing materials, was developed in OpenSees environment. The present paper describes the main results of shake-table testing and numerical modelling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

584-591

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Fiorino, R. Landolfo, G. Della Corte, Lateral Response of Sheathed Cold-Formed Shear Walls: An Analytical Approach, in: Proc. 18th Int. Spec. Conf. Cold-Formed Steel Struct., Orlando, FL, USA, 2006: p.603–619.

DOI: 10.1061/40889(201)48

Google Scholar

[2] V. Macillo, L. Fiorino, R. Landolfo, Seismic response of CFS shear walls sheathed with nailed gypsum panels: Experimental tests, Thin-Walled Struct. 120 (2017) 161–171. doi: 10. 1016/j. tws. 2017. 08. 022.

DOI: 10.1016/j.tws.2017.08.022

Google Scholar

[3] L. Fiorino, S. Shakeel, V. Macillo, R. Landolfo, Behaviour factor (q) evaluation the CFS braced structures according to FEMA P695, J. Constr. Steel Res. 138 (2017) 324–339. doi: 10. 1016/j. jcsr. 2017. 07. 014.

DOI: 10.1016/j.jcsr.2017.07.014

Google Scholar

[4] L. Fiorino, V. Macillo, R. Landolfo, Experimental characterization of quick mechanical connecting systems for cold-formed steel structures, Adv. Struct. Eng. 20 (2017) 1098–1110. doi: 10. 1177/1369433216671318.

DOI: 10.1177/1369433216671318

Google Scholar

[5] L. Fiorino, M.T. Terracciano, R. Landolfo, Experimental investigation of seismic behaviour of low dissipative CFS strap-braced stud walls, J. Constr. Steel Res. 127 (2016) 92–107. doi: 10. 1016/j. jcsr. 2016. 07. 027.

DOI: 10.1016/j.jcsr.2016.07.027

Google Scholar

[6] L. Fiorino, T. Pali, B. Bucciero, V. Macillo, M. Teresa Terracciano, R. Landolfo, Experimental study on screwed connections for sheathed CFS structures with gypsum or cement based panels, Thin-Walled Struct. 116 (2017).

DOI: 10.1016/j.tws.2017.03.031

Google Scholar

[7] L. Fiorino, O. Iuorio, V. Macillo, M.T. Terracciano, T. Pali, R. Landolfo, Seismic Design Method for CFS Diagonal Strap-Braced Stud Walls: Experimental Validation, J. Struct. Eng. 142 (2016) 4015154. doi: 10. 1061/(ASCE)ST. 1943-541X. 0001408.

DOI: 10.1061/(asce)st.1943-541x.0001408

Google Scholar

[8] O. Iuorio, L. Fiorino, R. Landolfo, Testing CFS structures: The new school BFS in Naples, Thin-Walled Struct. 84 (2014). doi: 10. 1016/j. tws. 2014. 06. 006.

DOI: 10.1016/j.tws.2014.06.006

Google Scholar

[9] L. Fiorino, O. Iuorio, R. Landolfo, Designing CFS structures: The new school bfs in naples, Thin-Walled Struct. 78 (2014) 37–47. doi: 10. 1016/j. tws. 2013. 12. 008.

DOI: 10.1016/j.tws.2013.12.008

Google Scholar

[10] V. Macillo, O. Iuorio, M.T. Terracciano, L. Fiorino, R. Landolfo, Seismic response of Cfs strap-braced stud walls: Theoretical study, Thin-Walled Struct. 85 (2014) 301–312. doi: 10. 1016/j. tws. 2014. 09. 006.

DOI: 10.1016/j.tws.2014.09.006

Google Scholar

[11] O. Iuorio, V. Macillo, M.T. Terracciano, T. Pali, L. Fiorino, R. Landolfo, Seismic response of Cfs strap-braced stud walls: Experimental investigation, Thin-Walled Struct. 85 (2014) 466–480. doi: 10. 1016/j. tws. 2014. 09. 008.

DOI: 10.1016/j.tws.2014.09.008

Google Scholar

[12] V. Macillo, B. Bucciero, M.T. Terracciano, T. Pali, L. Fiorino, R. Landolfo, 11. 01: Shaking table tests on cold-formed steel building sheathed with gypsum panels, Ce/papers. 1 (2017) 2847–2856. doi: 10. 1002/cepa. 336.

DOI: 10.1002/cepa.336

Google Scholar

[13] T. Pali, B. Bucciero, M.T. Terracciano, V. Macillo, L. Fiorino, R. Landolfo, 11. 02: In-plane quasi-static cyclic tests on lightweight steel drywall non-structural partition walls, Ce/papers. 1 (2017) 2857–2866. doi: 10. 1002/cepa. 337.

DOI: 10.1002/cepa.337

Google Scholar

[14] L. Fiorino, O. Iuorio, R. Landolfo, Seismic analysis of sheathing-braced cold-formed steel structures, Eng. Struct. 34 (2012) 538–547. doi: 10. 1016/j. engstruct. 2011. 09. 002.

DOI: 10.1016/j.engstruct.2011.09.002

Google Scholar

[15] L. Fiorino, S. Shakeel, V. Macillo, R. Landolfo, Seismic response of CFS shear walls sheathed with nailed gypsum panels: Numerical modelling, Thin-Walled Struct. (2017).

DOI: 10.1016/j.tws.2017.10.028

Google Scholar

[16] I. Shamim, C.A. Rogers, Steel sheathed/CFS framed shear walls under dynamic loading: Numerical modelling and calibration, Thin-Walled Struct. 71 (2013) 57–71. doi: 10. 1016/j. tws. 2013. 05. 007.

DOI: 10.1016/j.tws.2013.05.007

Google Scholar

[17] P. Liu, K.D. Peterman, B.W. Schafer, Impact of construction details on OSB-sheathed cold-formed steel framed shear walls, J. Constr. Steel Res. 101 (2014). doi: 10. 1016/j. jcsr. 2014. 05. 003.

DOI: 10.1016/j.jcsr.2014.05.003

Google Scholar

[18] B.W. Schafer, D. Ayhan, J. Leng, P. Liu, D. Padilla-Llano, K.D. Peterman, M. Stehman, S.G. Buonopane, M. Eatherton, R. Madsen, B. Manley, C.D. Moen, N. Nakata, C. Rogers, C. Yu, Seismic Response and Engineering of Cold-formed Steel Framed Buildings, Structures. (2016).

DOI: 10.1016/j.istruc.2016.05.009

Google Scholar

[19] J. Leng, B.W. Schafer, S.G. Buonopane, Modeling the seismic response of cold-formed steel framed buildings: Model development for the CFS-NEES building, in: Struct. Stab. Res. Counc. Annu. Stab. Conf. 2013, SSRC 2013, (2013).

DOI: 10.1016/j.engstruct.2017.10.008

Google Scholar

[20] J. Leng, K.D. Peterman, G. Bian, S.G. Buonopane, B.W. Schafer, Modeling seismic response of a full-scale cold-formed steel-framed building, Eng. Struct. 153 (2017) 146–165. doi: 10. 1016/j. engstruct. 2017. 10. 008.

DOI: 10.1016/j.engstruct.2017.10.008

Google Scholar

[21] S. Mazzoni, F. McKenna, M.H. Scott, G.L. Fenves, OpenSees, (2009).

Google Scholar

[22] L. Fiorino, V. Macillo, M.T. Terracciano, T. Pali, B. Bucciero, R. Landolfo, Experimental tests for the seismic response evaluation of cold-formed steel shear walls sheathed with nailed gypsum- based panels, in: 23th Int. Spec. Conf. Cold-Formed Steel Struct., Baltimore, 2016: p.807.

DOI: 10.1002/cepa.336

Google Scholar

[23] L. Fiorino, V. Macillo, R. Landolfo, Shake table tests of a full-scale two-story sheathing-braced cold-formed steel building, Eng. Struct. 151 (2017) 633–647. doi: 10. 1016/j. engstruct. 2017. 08. 056.

DOI: 10.1016/j.engstruct.2017.08.056

Google Scholar

[24] ASCE/SEI. 2010. ASCE 7-10: Minimum Design Loads for Buildings and Other Structures,. American Society of Civil Engineers., (n. d. ).

DOI: 10.1061/9780784412916.err

Google Scholar

[25] J. Leng, S.G. Buonopane, B.W. Shafer, Seismic Modeling and Incremental Dynamic Analysis of the Cold-Formed Steel Framed CFS-NEES Building, in: Baltimore, (2016).

Google Scholar