Finite Element Analysis of Composite Replaceable Short Links

Article Preview

Abstract:

Eccentrically braced frames (EBF) with detachable short links are an efficient solution for buildings in seismic areas owing to their high energy dissipation capacity and ductility and ease of repair in the earthquake aftermath. Past studies revealed that short links can develop shear overstrength (i.e. Vu/Vp, where Vu is the ultimate shear strength and Vp the corresponding plastic resistance) larger than the value recommended in EC8 [1] (i.e. Vu/Vp =1.5). One of the factors causing the higher shear overstrength is the presence of axial restraints that leads to the development of tensile forces in the link at large levels of rotation. Another reason for higher shear overstrength is the composite slab that can resist the shear distortion together with the short link. Within the DUAREM project [2], full scale pseudo-dynamic experimental tests were carried out on 3D EBF allowing thus the investigation of replaceable links considering two arrangements: (i) steel solution – the link was uncoupled from the slab (ii) composite solution – the slab and link are connected. The aim of this paper is to present the results of finite element analyses (FEAs), based on calibrated models and the comparison between the obtained results and the experimental tests performed by [2]. The numerical investigation carried out aims to evaluate the shear overstrength and the level of axial force in the link for both tested configurations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

576-583

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] EN 1998-1, Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings. CEN, (2005).

DOI: 10.1002/9783433609194.ch3

Google Scholar

[2] Ioan, A., Stratan, A., Dubină, D., Poljanšek, M., Molina, F.J., Taucer, F., Pegon, P., Sabău, G. (2016).

DOI: 10.1016/j.engstruct.2016.01.038

Google Scholar

[3] Bosco, M., Marino, E.M., Rossi, P.P. (2017). A design procedure for dual eccentrically braced-moment resisting frames in the framework of Eurocode 8. Engineering Structures, 130, 198-215.

DOI: 10.1016/j.engstruct.2016.09.059

Google Scholar

[4] Bosco, M., Marino, E.M., Rossi, P.P. (2016). Influence of modelling of steel link beams on the seismic response of EBFs. Engineering Structures, 127, 459-474.

DOI: 10.1016/j.engstruct.2016.08.062

Google Scholar

[5] Bosco, M., Marino, E.M., Rossi, P.P. (2015). Critical review of the EC8 design provisions for buildings with eccentric braces. Earthquake and Structures, 8(6), 1407-1433.

DOI: 10.12989/eas.2015.8.6.1407

Google Scholar

[6] Bosco, M., Marino, E.M., Rossi, P.P. (2014). Proposal of modifications to the design provisions of Eurocode 8 for buildings with split K eccentric braces. Engineering Structures, 61, 209-223.

DOI: 10.1016/j.engstruct.2013.07.022

Google Scholar

[7] Bosco, M., Rossi, P.P. (2013). A design procedure for dual eccentrically braced systems: Numerical investigation. Journal of Constructional Steel Research, 80, 453-464.

DOI: 10.1016/j.jcsr.2012.08.003

Google Scholar

[8] Bosco M., Rossi P.P. (2013). A design procedure for dual eccentrically braced systems: Analytical formulation. Journal of Constructional Steel Research, 80, 440-452.

DOI: 10.1016/j.jcsr.2012.09.019

Google Scholar

[9] Clifton G.C., Nashid H., Ferguson G, Hodgson M., Seal C., Bruneau M., MacRae G.A. and Gardiner S. (2012).

Google Scholar

[10] Montuori, R., Nastri, E., Piluso, V. (2017). Influence of the bracing scheme on seismic performances of MRF-EBF dual systems. Journal of Constructional Steel Research, 132, 179-190.

DOI: 10.1016/j.jcsr.2017.01.018

Google Scholar

[11] Montuori, R., Nastri, E., Piluso, V. (2016). Theory of Plastic Mechanism Control for MRF-EBF dual systems: Closed form solution. Engineering Structures, 118, 287-306.

DOI: 10.1016/j.engstruct.2016.03.050

Google Scholar

[12] Montuori, R., Nastri, E., Piluso, V. (2015). Seismic response of EB-frames with inverted Y-scheme: TPMC versus Eurocode provisions. Earthquake and Structures, 8(5), 1191-1214.

DOI: 10.12989/eas.2015.8.5.1191

Google Scholar

[13] Montuori, R., Nastri, E., Piluso, V. (2014). Rigid-plastic analysis and moment-shear interaction for hierarchy criteria of inverted y EB-Frames. Journal of Constructional Steel Research, 95, 71-80.

DOI: 10.1016/j.jcsr.2013.11.013

Google Scholar

[14] Montuori, R., Nastri, E., Piluso, V. (2014). Theory of plastic mechanism control for eccentrically braced frames with inverted y-scheme. Journal of Constructional Steel Research, 92, 122-135.

DOI: 10.1016/j.jcsr.2013.10.009

Google Scholar

[15] Barecchia, E., D'Aniello, M., Della Corte, G., Mazzolani, F.M. (2006).

Google Scholar

[16] D'Aniello, M., Della Corte, G., Mazzolani, F.M. (2006). Seismic Upgrading of RC Buildings by Eccentric Braces: Experimental Results vs. Numerical Modeling. Proceedings of STESSA Conference 2006, Tokyo, Japan, August 14-17.

DOI: 10.1201/9780203861592.ch80

Google Scholar

[17] Dubina, D., Stratan, A., Dinu, F. (2008). Dual high-strength steel eccentrically braced frames with removable links. Earthquake Engineering and Structural Dynamics, 37, 1703–1720.

DOI: 10.1002/eqe.828

Google Scholar

[18] Dubina, D., Stratan, A., Dinu, F. (2007). High Strength Steel EB frames with low strength bolted links. Proceedings of the 5th International Conference on Advances in Steel Structures, ICASS 2007, 249-254, Singapore, December 5-7.

DOI: 10.3850/978-981-07-2615-7_211

Google Scholar

[19] Mansour, N., Shen, Y., Christopoulos, C., Tremblay, R. (2008).

Google Scholar

[20] Mazzolani, F.M., Della Corte, G., D'Aniello, M. (2009) Experimental analysis of steel dissipative bracing systems for seismic upgrading. Journal of Civil Engineering and Management, 15(1), 7-19.

DOI: 10.3846/1392-3730.2009.15.7-19

Google Scholar

[21] Dinu, F., Dubina, D., Stratan, A. (2010).

Google Scholar

[22] Ioan, A., Stratan, A., Dubina, D. (2016). Re-centring dual eccentrically braced frames with removable links. Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science, 17(2), 169-177.

DOI: 10.1016/j.soildyn.2018.05.015

Google Scholar

[23] Ioan, A., Stratan, A., Dubina, D. (2013). Numerical simulation of bolted links removal in eccentrically braced frames. Pollack Periodica 8(1), 15-26.

DOI: 10.1556/pollack.8.2013.1.2

Google Scholar

[24] Della Corte, G., D'Aniello, M., Landolfo, R. (2013). Analytical and numerical study of plastic overstrength of shear links. Journal of Constructional Steel Research, 82, 19-32.

DOI: 10.1016/j.jcsr.2012.11.013

Google Scholar

[25] Della Corte, G., D'Aniello, M., Mazzolani, F.M. (2007).

Google Scholar

[26] Ciutina, A., Dubina, D. and Danku, G. (2013) Influence of steel-concrete interaction in dissipative zones of frames: I – Experimental study. Steel and Composite Structures. 15(3), 281-000. http: /dx. doi. org/10. 12989/scs. 2013. 15. 3. 281.

DOI: 10.12989/scs.2013.15.3.299

Google Scholar

[27] Danku, G., Dubina, D., and Ciutina, A. (2013). Influence of steel-concrete interaction in dissipative zones of frames: II - Numerical study. Steel and Composite Structures. 15(3), 305-000. http: /dx. doi. org/10. 12989/scs. 2013. 15. 3. 305.

DOI: 10.12989/scs.2013.15.3.323

Google Scholar

[28] D'Aniello M., Cassiano D. and Landolfo R. (2016).

Google Scholar

[29] D'Aniello M., Cassiano D. and Landolfo R. (2017). Simplified criteria for finite element modelling of European preloadable bolts. Steel and Composite Structures.

Google Scholar

[30] Hillerborg, A., Modeer, M., and Petersson, P-E. (1976).

Google Scholar

[31] Lee, J., and Fenves, G.L. (1998). Plastic-Damage Model for cyclic loading of concrete structures. Journal of Engineering Mechanics 124(8) 892-900.

DOI: 10.1061/(asce)0733-9399(1998)124:8(892)

Google Scholar

[32] Dassault (2014), Abaqus 6. 14 - Abaqus Analysis User's Manual, Dassault Systèmes Simulia Corp.

Google Scholar

[33] EN 1992: 1–1, Design of Concrete Structures - Part 1–1: General rules and rules for buildings. CEN, (2005).

Google Scholar

[34] EN 1993: 1–8, Design of Steel Structures - Part 1–8: Design of Joints. CEN, (2005).

Google Scholar

[35] Pavlović, M., Heistermann, C., Veljković, M., Pak, D., Feldmann, M., Rebelo, C., Simões da Silva, L. (2015).

DOI: 10.1016/j.engstruct.2015.04.026

Google Scholar