[1]
EN 1998-1, Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings. CEN, (2005).
DOI: 10.1002/9783433609194.ch3
Google Scholar
[2]
Ioan, A., Stratan, A., Dubină, D., Poljanšek, M., Molina, F.J., Taucer, F., Pegon, P., Sabău, G. (2016).
DOI: 10.1016/j.engstruct.2016.01.038
Google Scholar
[3]
Bosco, M., Marino, E.M., Rossi, P.P. (2017). A design procedure for dual eccentrically braced-moment resisting frames in the framework of Eurocode 8. Engineering Structures, 130, 198-215.
DOI: 10.1016/j.engstruct.2016.09.059
Google Scholar
[4]
Bosco, M., Marino, E.M., Rossi, P.P. (2016). Influence of modelling of steel link beams on the seismic response of EBFs. Engineering Structures, 127, 459-474.
DOI: 10.1016/j.engstruct.2016.08.062
Google Scholar
[5]
Bosco, M., Marino, E.M., Rossi, P.P. (2015). Critical review of the EC8 design provisions for buildings with eccentric braces. Earthquake and Structures, 8(6), 1407-1433.
DOI: 10.12989/eas.2015.8.6.1407
Google Scholar
[6]
Bosco, M., Marino, E.M., Rossi, P.P. (2014). Proposal of modifications to the design provisions of Eurocode 8 for buildings with split K eccentric braces. Engineering Structures, 61, 209-223.
DOI: 10.1016/j.engstruct.2013.07.022
Google Scholar
[7]
Bosco, M., Rossi, P.P. (2013). A design procedure for dual eccentrically braced systems: Numerical investigation. Journal of Constructional Steel Research, 80, 453-464.
DOI: 10.1016/j.jcsr.2012.08.003
Google Scholar
[8]
Bosco M., Rossi P.P. (2013). A design procedure for dual eccentrically braced systems: Analytical formulation. Journal of Constructional Steel Research, 80, 440-452.
DOI: 10.1016/j.jcsr.2012.09.019
Google Scholar
[9]
Clifton G.C., Nashid H., Ferguson G, Hodgson M., Seal C., Bruneau M., MacRae G.A. and Gardiner S. (2012).
Google Scholar
[10]
Montuori, R., Nastri, E., Piluso, V. (2017). Influence of the bracing scheme on seismic performances of MRF-EBF dual systems. Journal of Constructional Steel Research, 132, 179-190.
DOI: 10.1016/j.jcsr.2017.01.018
Google Scholar
[11]
Montuori, R., Nastri, E., Piluso, V. (2016). Theory of Plastic Mechanism Control for MRF-EBF dual systems: Closed form solution. Engineering Structures, 118, 287-306.
DOI: 10.1016/j.engstruct.2016.03.050
Google Scholar
[12]
Montuori, R., Nastri, E., Piluso, V. (2015). Seismic response of EB-frames with inverted Y-scheme: TPMC versus Eurocode provisions. Earthquake and Structures, 8(5), 1191-1214.
DOI: 10.12989/eas.2015.8.5.1191
Google Scholar
[13]
Montuori, R., Nastri, E., Piluso, V. (2014). Rigid-plastic analysis and moment-shear interaction for hierarchy criteria of inverted y EB-Frames. Journal of Constructional Steel Research, 95, 71-80.
DOI: 10.1016/j.jcsr.2013.11.013
Google Scholar
[14]
Montuori, R., Nastri, E., Piluso, V. (2014). Theory of plastic mechanism control for eccentrically braced frames with inverted y-scheme. Journal of Constructional Steel Research, 92, 122-135.
DOI: 10.1016/j.jcsr.2013.10.009
Google Scholar
[15]
Barecchia, E., D'Aniello, M., Della Corte, G., Mazzolani, F.M. (2006).
Google Scholar
[16]
D'Aniello, M., Della Corte, G., Mazzolani, F.M. (2006). Seismic Upgrading of RC Buildings by Eccentric Braces: Experimental Results vs. Numerical Modeling. Proceedings of STESSA Conference 2006, Tokyo, Japan, August 14-17.
DOI: 10.1201/9780203861592.ch80
Google Scholar
[17]
Dubina, D., Stratan, A., Dinu, F. (2008). Dual high-strength steel eccentrically braced frames with removable links. Earthquake Engineering and Structural Dynamics, 37, 1703–1720.
DOI: 10.1002/eqe.828
Google Scholar
[18]
Dubina, D., Stratan, A., Dinu, F. (2007). High Strength Steel EB frames with low strength bolted links. Proceedings of the 5th International Conference on Advances in Steel Structures, ICASS 2007, 249-254, Singapore, December 5-7.
DOI: 10.3850/978-981-07-2615-7_211
Google Scholar
[19]
Mansour, N., Shen, Y., Christopoulos, C., Tremblay, R. (2008).
Google Scholar
[20]
Mazzolani, F.M., Della Corte, G., D'Aniello, M. (2009) Experimental analysis of steel dissipative bracing systems for seismic upgrading. Journal of Civil Engineering and Management, 15(1), 7-19.
DOI: 10.3846/1392-3730.2009.15.7-19
Google Scholar
[21]
Dinu, F., Dubina, D., Stratan, A. (2010).
Google Scholar
[22]
Ioan, A., Stratan, A., Dubina, D. (2016). Re-centring dual eccentrically braced frames with removable links. Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science, 17(2), 169-177.
DOI: 10.1016/j.soildyn.2018.05.015
Google Scholar
[23]
Ioan, A., Stratan, A., Dubina, D. (2013). Numerical simulation of bolted links removal in eccentrically braced frames. Pollack Periodica 8(1), 15-26.
DOI: 10.1556/pollack.8.2013.1.2
Google Scholar
[24]
Della Corte, G., D'Aniello, M., Landolfo, R. (2013). Analytical and numerical study of plastic overstrength of shear links. Journal of Constructional Steel Research, 82, 19-32.
DOI: 10.1016/j.jcsr.2012.11.013
Google Scholar
[25]
Della Corte, G., D'Aniello, M., Mazzolani, F.M. (2007).
Google Scholar
[26]
Ciutina, A., Dubina, D. and Danku, G. (2013) Influence of steel-concrete interaction in dissipative zones of frames: I – Experimental study. Steel and Composite Structures. 15(3), 281-000. http: /dx. doi. org/10. 12989/scs. 2013. 15. 3. 281.
DOI: 10.12989/scs.2013.15.3.299
Google Scholar
[27]
Danku, G., Dubina, D., and Ciutina, A. (2013). Influence of steel-concrete interaction in dissipative zones of frames: II - Numerical study. Steel and Composite Structures. 15(3), 305-000. http: /dx. doi. org/10. 12989/scs. 2013. 15. 3. 305.
DOI: 10.12989/scs.2013.15.3.323
Google Scholar
[28]
D'Aniello M., Cassiano D. and Landolfo R. (2016).
Google Scholar
[29]
D'Aniello M., Cassiano D. and Landolfo R. (2017). Simplified criteria for finite element modelling of European preloadable bolts. Steel and Composite Structures.
Google Scholar
[30]
Hillerborg, A., Modeer, M., and Petersson, P-E. (1976).
Google Scholar
[31]
Lee, J., and Fenves, G.L. (1998). Plastic-Damage Model for cyclic loading of concrete structures. Journal of Engineering Mechanics 124(8) 892-900.
DOI: 10.1061/(asce)0733-9399(1998)124:8(892)
Google Scholar
[32]
Dassault (2014), Abaqus 6. 14 - Abaqus Analysis User's Manual, Dassault Systèmes Simulia Corp.
Google Scholar
[33]
EN 1992: 1–1, Design of Concrete Structures - Part 1–1: General rules and rules for buildings. CEN, (2005).
Google Scholar
[34]
EN 1993: 1–8, Design of Steel Structures - Part 1–8: Design of Joints. CEN, (2005).
Google Scholar
[35]
Pavlović, M., Heistermann, C., Veljković, M., Pak, D., Feldmann, M., Rebelo, C., Simões da Silva, L. (2015).
DOI: 10.1016/j.engstruct.2015.04.026
Google Scholar