[1]
EN 1998-1, Eurocode 8, Design of structures for earthquake resistance, Part 1: general rules, seismic actions and rules for buildings, European Committee for Standardization, Brussels, CEN (2005).
DOI: 10.3403/03244372
Google Scholar
[2]
I. Shamim, C.A. Rogers, Numerical evaluation: AISI S400 steel-sheathed CFS framed shear wall seismic design method, Thin-Walled Struct. 95 (2015) 48–59.
DOI: 10.1016/j.tws.2015.06.011
Google Scholar
[3]
Federal Emergency Management Agency, Quantification of building seismic performance factors FEMA P695, Washington, (2009).
Google Scholar
[4]
L. Fiorino, S. Shakeel, V. Macillo, R. Landolfo, Behaviour factor (q) evaluation the CFS braced structures according to FEMA P695, J. Constr. Steel Res. 138 (2017) 324–339.
DOI: 10.1016/j.jcsr.2017.07.014
Google Scholar
[5]
PEER. OpenSees: Open system for earthquake engineering simulation, Pacific Earthquake Engineering Research Center, University of California, Berkeley, California, (2006).
Google Scholar
[6]
C.A. Cornell, F. Jalayer, R.O. Hamburger, D.A. Foutch, Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines, J. Structural Engineering. 128(4) (2002) 526-533.
DOI: 10.1061/(asce)0733-9445(2002)128:4(526)
Google Scholar
[7]
D. Vamvatsikos, Accurate application and Second-Order improvement of SAC/FEMA probabilistic formats for seismic performance assessment, J. Structural Engineering. 140(2) (2014).
DOI: 10.1061/(asce)st.1943-541x.0000774
Google Scholar
[8]
EN 1993-1-3, Eurocode 3, Design of steel structures, Part 1. 3: general rules for cold formed thin gauge members and sheeting, European Committee for Standardization, Brussels, CEN (2007).
DOI: 10.3403/02338401
Google Scholar
[9]
AISI-S100. North American specification for the design of cold-formed steel structural members, American Iron and Steel Institute, Washington, (2016).
Google Scholar
[10]
S. Kechidi, N. Bourahla, J.M. Castro, Seismic design procedure for cold-formed steel shear wall frames: Proposal and evaluation, J. Constructional Steel Research. 128 (2017) 219-232.
DOI: 10.1016/j.jcsr.2016.08.018
Google Scholar
[11]
S. Kechidi, N. Bourahla, Deteriorating hysteresis model for cold-formed steel shear wall panel based on its physical and mechanical characteristics, Thin-Walled Structures. 98(Part B) (2016) 421-430.
DOI: 10.1016/j.tws.2015.09.022
Google Scholar
[12]
A.E. Branston, C.Y. Chen, F.A. Boudreault, C.A. Rogers, Testing of light-gauge steel frame wood structural panel shear walls, Canadian Journal of Civil Engineering. 33(9) (2006) 561-572.
DOI: 10.1139/l06-014
Google Scholar
[13]
D. Vamvatsikos, C.A. Cornell, Incremental dynamic analysis, Earthquake Engineering and Structural Dynamics. 31(3) (2002) 491-514.
DOI: 10.1002/eqe.141
Google Scholar
[14]
J.M. Martinez, Seismic performance assessment of multi-storey buildings with cold formed steel shear wall systems (PhD thesis), University of Waterloo, Ontario, (2007).
Google Scholar
[15]
L. Fiorino, O. Iuorio, V. Macillo, R. Landolfo, Performance-based design of sheathed CFS buildings in seismic area, Thin-Walled Structures. 61 (2012) 248-257.
DOI: 10.1016/j.tws.2012.03.022
Google Scholar
[16]
J.W. Baker, Conditional Mean Spectrum: Tool for Ground-Motion Selection, J. Structural Engineering. 137(3) (2011) 322-331.
DOI: 10.1061/(asce)st.1943-541x.0000215
Google Scholar
[17]
P.E. Pinto, P. Franchin, Existing buildings: the new Italian provisions for probabilistic seismic assessment, Perspectives on European Earthquake Engineering and Seismology, Geotechnical, Geological and Earthquake Engineering. 34 (2014) 97-130.
DOI: 10.1007/978-3-319-07118-3_3
Google Scholar
[18]
S. Kechidi, L. Macedo, J.M. Castro, N. Bourahla, Seismic risk assessment of cold-formed steel shear wall systems, Journal of Constructional Steel Research. 138 (2017) 565-579.
DOI: 10.1016/j.jcsr.2017.08.011
Google Scholar
[19]
J.W. Baker, Efficient analytical fragility function fitting using dynamic structural analysis, Earthquake Spectra. 31(1) (2015) 579-599.
DOI: 10.1193/021113eqs025m
Google Scholar
[20]
B.A. Bradley, The seismic demand hazard and importance of the conditioning intensity measure, Earthquake Engineering & Structural Dynamics. 41(11) (2012) 1417-1437.
DOI: 10.1002/eqe.2221
Google Scholar
[21]
M. Marques, L. Macedo, M. Araújo, L. Martins, J.M. Castro, L. Sousa, V. Silva, R. Delgado, Influence of Record Selection Procedures on Seismic Loss Estimations, Vulnerability, Uncertainty, and Risk. (2014) 1756-1766.
DOI: 10.1061/9780784413609.176
Google Scholar