[1]
D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, Springer, TX, USA, (2008).
Google Scholar
[2]
J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Design 56 (2014) 1078-1113.
DOI: 10.1016/j.matdes.2013.11.084
Google Scholar
[3]
C. Fang, M.C.H. Yam, A.C.C. Lam, L.K. Xie, Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts, J. Construct. Steel Res. 94 (2014) 122-136.
DOI: 10.1016/j.jcsr.2013.11.008
Google Scholar
[4]
C. Fang, M.C.H. Yam, H.W. Ma, K.F. Chung, Tests on superelastic Ni–Ti SMA bars under cyclic tension and direct-shear: towards practical recentring connections, Mater. Struct. 48(4) (2015) 1013-1030.
DOI: 10.1617/s11527-013-0212-4
Google Scholar
[5]
C. Fang, M.C.H. Yam, A.C.C. Lam, Y.Y. Zhang, Feasibility study of shape memory alloy ring spring systems for self-centring seismic resisting devices, Smart Mater. Struct. 24(7) (2015) 075024.
DOI: 10.1088/0964-1726/24/7/075024
Google Scholar
[6]
C. Fang, W. Wang, C. He, Y.Y. Chen, Self-centring behaviour of steel and steel-concrete composite connections equipped with NiTi SMA bolts, Eng. Struct. 150 (2017) 390-408.
DOI: 10.1016/j.engstruct.2017.07.067
Google Scholar
[7]
C.X. Qiu, S.Y. Zhu, Shake table test and numerical study of self-centering steel frame with SMA braces, Earthq. Eng. Struct. Dyn. 46(1) (2017) 117-137.
DOI: 10.1002/eqe.2777
Google Scholar
[8]
X. Xu, Y.F. Zhang, Y.Z. Luo, Self-centering eccentrically braced frames using shape memory alloy bolts and post-tensioned tendons, J. Construct. Steel Res. 125 (2016) 190-204.
DOI: 10.1016/j.jcsr.2016.06.017
Google Scholar
[9]
W. Wang, C. Fang, J. Liu, Large size superelastic SMA bars: heat treatment strategy, mechanical property and seismic application, Smart Mater. Struct. 25(7) (2016) 075001.
DOI: 10.1088/0964-1726/25/7/075001
Google Scholar
[10]
W. Wang, C. Fang, J. Liu, Self-centering beam-to-column connections with combined superelastic SMA bolts and steel angles, J. Struct. Eng. (2017) 04016175.
DOI: 10.1061/(asce)st.1943-541x.0001675
Google Scholar
[11]
M.C.H. Yam, C. Fang, A.C.C. Lam, Y.Y. Zhang, Numerical study and practical design of beam-to-column connections with shape memory alloys, J. Construct. Steel Res. 104 (2015) 177-192.
DOI: 10.1016/j.jcsr.2014.10.017
Google Scholar
[12]
A.R. Bhuiyan, M.S. Alam, Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing, Eng. Struct. 49 (2013) 396-407.
DOI: 10.1016/j.engstruct.2012.11.022
Google Scholar
[13]
A.H.M.M. Billah, M.S. Alam, Performance-based seismic design of shape memory alloy–reinforced concrete bridge piers. I: Development of performance-based damage states, J. Struct. Eng. (2016) 04016140.
DOI: 10.1061/(asce)st.1943-541x.0001458
Google Scholar
[14]
European Committee for Standardization (CEN). Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings. " Eurocode 8, Brussels, Belgium, (2004).
DOI: 10.3403/03244372
Google Scholar
[15]
AISC. Seismic provisions for structural steel buildings. AISC, Chicago, (2010).
Google Scholar