[1]
Reza Hojjati-Talemi, Ali Zahedi, Patrick De Baets (2015). Fretting fatigue failure mechanism of automotive shock absorber valve. International Journal of Fatigue, Volume 73, pp.58-65.
DOI: 10.1016/j.ijfatigue.2014.11.010
Google Scholar
[2]
Gallardo JM, Soria L, Herrera EJ (2007). Investigation of service failures in automobile shock absorbers. Engineering Failure Analysis, Volume 14, pp.355-363.
DOI: 10.1016/j.engfailanal.2006.02.006
Google Scholar
[3]
D.S. Mehta, S.H. Masood, W.Q. Song (2004). Investigation of wear properties of magnesium and aluminum alloys for automotive applications. Materials Processing Technology, Volumes 155-156, pp.1526-1531.
DOI: 10.1016/j.jmatprotec.2004.04.247
Google Scholar
[4]
W. S Millera, L Zhuanga, J Bottemaa, A. J Wittebrooda, P De Smetb, A Haszlerc, A Viereggec (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, Volume 280, Issue 1, pp.37-49.
Google Scholar
[5]
Wang Ping, Wu Ting, Peng Hao, Guo Xiao Yang (2016). Effect of NaAlO2 concentrations on the properties of micro-arc oxidation coatings on pure titanium. Materials Letters, Volume 170, pp.171-174.
DOI: 10.1016/j.matlet.2016.02.024
Google Scholar
[6]
Xiangyu Lu, Xingguo Feng, Yu Zuo, Chuanbo Zheng, Sheng Lu, Lei Xu (2015).
Google Scholar
[7]
Young Gun Ko, Seung Namgung, Dong Hyuk Shin (2010). Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation. Surface and Coatings Technology, Volume 205, pp.2525-2531.
DOI: 10.1016/j.surfcoat.2010.09.055
Google Scholar
[8]
V. Ezhilselvi, J. Nithina, J.N. Balarajua, S. Subramanian (2016). The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy. Surface and Coatings Technology, Volume 288, pp.221-229.
DOI: 10.1016/j.surfcoat.2016.01.040
Google Scholar
[9]
Han Chunxia, Liu Xiangdong, Liu Caiwen, Liu Yongzhen, Wang Xiaojun (2007). Effect of cathode voltage in micro-arc oxidation on ceramic coating film of ZAlSi12Cu2Mg1 alloy. Rare Metal Materials and Engineering, Volume 36, pp.117-120.
DOI: 10.1016/s1002-0721(07)60529-8
Google Scholar
[10]
Xiaohong Yao, Xiangyu Zhang, Haibo Wu, Linhai Tian, Yong Ma, Bin Tang (2014). Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation. Applied Surface Science, Volume 292, pp.944-947.
DOI: 10.1016/j.apsusc.2013.12.083
Google Scholar
[11]
Xizhi Fan, Ying Wang, Binglin Zou, Lijian Gu, Wenzhi Huang, Xueqiang Cao (2013). Preparation and corrosion resistance of MAO/Ni-P composite coat on Mg alloy. Applied Surface Science, Volume 277, pp.272-280.
DOI: 10.1016/j.apsusc.2013.04.044
Google Scholar
[12]
Chun-Chieh Tseng, Jeou-Long Lee, Tzu-Hsuan Kuo, Shien-Nan Kuo, Kuo-Hui Tseng (2012).
Google Scholar
[13]
Feng Guo, Rong Ming Liu, Peng Fei Li (2011). Influence of Voltage Parameters on Formation Process of MAO Ceramic Coating on Aluminum Alloy. Advanced Materials Research, Volumes 189-193, pp.931-936.
DOI: 10.4028/www.scientific.net/amr.189-193.931
Google Scholar
[14]
M.H. Zhu, Z.B. Cai, X.Z. Lin, P.D. Ren, J. Tan, Z.R. Zhou (2007). Fretting wear behaviour of ceramic coating prepared by micro-arc oxidation on Al–Si alloy. Wear, Volume 263, Issues 1-6, pp.472-480.
DOI: 10.1016/j.wear.2007.01.050
Google Scholar
[15]
Chun-Chieh Tseng, Jeou-Long Lee, Tzu-Hsuan Kuo, Shien-Nan Kuo, Kuo-Hui Tseng (2012).
Google Scholar