Micromechanical Study of the Forged Ti-1023 Titanium Alloy by Micro-Indentation

Article Preview

Abstract:

In order to study the micromechanical behaviour of the forged Ti-1023 titanium alloy, micro-indentation experiments of the forged Ti-1023 titanium alloy were performed with various maximum indentation loads from 500 mN to 4000 mN and various loading speeds from 5.06 mN/s to 51.85 mN/s. Using the experimental data, the non-destructive instrumental approach was applied to indicate the mechanical properties just like the Young’s modulus E, microhardness H, initial yield stress σy and strain hardening exponent n using the P-h curves from the tests. The result showed that the value of the indentation Young’s modulus basically remain unchanged in the range from 110 GPa to 150 GPa and H decreased with the increase of the load, the micro-indentaion plasticity constitutive equations were obtained by using Hookean elastic and power-law plastic stress-strain equations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-165

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Sahin, O. Uzun, U. Kolemen, N. Ucar: Mater. Charact Vol. 58 (2007), p.197.

Google Scholar

[2] F. Xue, F. Li, J. Cai, Z. Yuan, B. Chen and T. Liu: Mater. Design Vol. 36 (2012), p.81.

Google Scholar

[3] M.T. Lessmann, I. Sudić, S. Fazinić and T. Tadić, et al: J. Nucl. Mater Vol. 486 (2017), p.34.

Google Scholar

[4] J. Li, F. Li, F. Xue, J. Cai and B. Chen: Mater. Design Vol. 37 (2012), p.491.

Google Scholar

[5] J. Qin, Y. Huang, K. Hwang, J. Song and G. Pharr: Acta Mater Vol. 55 (2007), p.6127.

Google Scholar

[6] V. Králík and J. Němeček: Mater. Sci. Eng. A Vol. 618 (2014), p.118.

Google Scholar

[7] J. Cai, F. Li, T. Liu and B. Chen: Mater. Charact Vol. 62 (2011), p.287.

Google Scholar

[8] C. Wang, F. Li, L. Wei, Y. Yang and J. Dong: Mater. Sci. Eng. A Vol. 571 (2013), p.95.

Google Scholar

[9] A. Jung, Z. Chen and J. Schmauch, et al: Acta. Mater Vol. 102 (2016), p.38.

Google Scholar

[10] X. Ma, F. Li, J. Cao, Z. Sun, Q. Wan and J. Li: J. Alloy. Compd Vol. 703 (2017), p.298.

Google Scholar

[11] J. Cai, F. Li, T. Liu and B. Chen: Mater. Design Vol. 32 (2011), p.2756.

Google Scholar

[12] J. Dong, F. Li and C. Wang: Mater. Sci. Eng. A Vol. 580 (2013), p.105.

Google Scholar

[13] M. Jackson, N. Jones, D. Dye and R. Dashwood: Mater. Sci. Eng. A Vol. 501 (2009), p.248.

Google Scholar

[14] J. Zhao, J. Zhong and F. Yan, et al: J. Alloy. Compd Vol. 710(2017), p.616.

Google Scholar

[15] M. Attaf: Mater. Lett Vol.58 (2004), p.3491.

Google Scholar

[16] A. Gouldstone, N. Chollacoop and M. Dao, et al: Acta Mater Vol.55 (2007), p.4015.

Google Scholar

[17] N. Janakiraman and F. Aldinger: J. Eur. Ceram. Soc Vol.30 (2010), p.775.

Google Scholar

[18] Y. Cheng and C. Cheng: J. Appl. Phys Vol.84 (1998), p.1284.

Google Scholar

[19] K. Tunvisut, N. O'Dowd and E. Busso: Int. J. Solids. Struct Vol.38 (2001), p.335.

Google Scholar