Stress-Strain Responses of Multi-Phase CoCrCuMnNi and CoCrMnFeCu Alloys

Article Preview

Abstract:

Stress-strain responses and microstructure of multi-phase CoCrCuMnNi and CoCrMnFeCu alloys in which Fe or Ni was replaced by Cu from Cantor alloy were studied. The deformation mechanisms of CoCrCuMnNi and CoCrMnFeCu were observed to be influenced by the presence of brittle sigma phase and the separated Cu-rich and the matrix phase. CoCrCuMnNi exhibited the relatively lower strength and excellent deformability, while CrMnFeCoCu alloy exhibited higher strength and lower ductility. The higher strength and the lower ductility of CoCrCuMnNi is associated with the presence more frequent and coarser sigma phase than those in CoCrCuMnNi.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-172

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, Adv. Eng. Mater. 6 (2004) 299–303.

Google Scholar

[2] D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley: Entropy 16 (2014), pp.494-525.

DOI: 10.3390/e16010494

Google Scholar

[3] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang: Metall. Mater. Trans. A 36 (2005), pp.881-888.

Google Scholar

[4] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent: Mater. Sci. Eng. A 375-377 (2004) pp.213-218.

Google Scholar

[5] C. Y. Hsu, J. W. Yeh, S. K. Chen, T. T. Shun, Metall. Mater. Trans. A 35 (2004) 1465–1469.

Google Scholar

[6] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6,231,666. (2001).

Google Scholar

[7] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, Adv. Eng. Mater. 10 (2008) 534–538.

Google Scholar

[8] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, Prog. Mater. Sci. 61 (2014) 1–93.

Google Scholar

[9] G. Salishchev, M. Tikhonovsky, D. Shaysultanov, N. Stepanov, A. Kuznetsov, J. Alloy. Compd. 591 (2014) 11–21.

Google Scholar

[10] B. S. Murty, J. W. Yeh, S. Ranganathan, High-Entropy Alloys, Elsevier Science (2014).

Google Scholar

[11] F. Otto, Y. Yang, H. Bei, E.P. George: Acta Mater. Vol. 61 (2013), pp.2628-2638.

Google Scholar

[12] S. M. Oh, S. I. Hong: Mater. Chem. Phys (2017), pp.1-6.

Google Scholar

[13] B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai, M.X. Wang, J: Alloys Compd. Vol. 493 (2010), pp.148-153.

Google Scholar

[14] W.L. Wang, L. Hu, S.B. Luo, L.J. Meng, D.L. Geng, B. Wei: Intermetallics Vol. 77 (2016), pp.41-45.

Google Scholar

[15] F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, CALPHAD Comput: Coupling phase Diagrams Thermochem. Vol. 45 (2014), pp.1-10.

Google Scholar

[16] B. Ren, Z.X. Liu, B. Cai, M.X. Wang, L. Shi: Mater. Des. Vol. 33 (2012), pp.121-126.

Google Scholar

[17] N.D. Stepanov, D.G. Shaysultanov, M.S. Ozerov, S.V. Zherebtsov, G.A. Salishchev: Mater. Lett. Vol. 185 (2016), pp.1-4.

Google Scholar

[18] J. Cieslak, S. M. Dubiel and M. Reissner: Acta Cryst. B68 (2012), pp.123-127.

Google Scholar

[19] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George: Intermetallics 46 (2014), pp.131-140.

Google Scholar

[20] S.I. Hong, J. Moon, S.K. Hong, and H.S. Kim, Mater. Sci. Eng., A 682 (2017). pp.569-576.

Google Scholar

[21] J. Moon, S.I. Hong, J. W. Bae, M. J. Jang, D. Yim, H.S. Kim, Mater.Res.Lett. (2017) 1323807.

Google Scholar

[22] S.I. Hong: Scr. Mater. Vol. 41 (1999), pp.433-438.

Google Scholar