[1]
A.J. Mason and J.M. Herbert, Electroceramics, second ed., John Wiley & Sons, England, (2003).
Google Scholar
[2]
Relva C. Buchanan, Ceramic Materials for Electronics, third ed., Marcel Dekke, U.S.A, (2004).
Google Scholar
[3]
G.H. Haertling, Ferroelectric Ceramics: History and Technology. J. Am. Ceram.Soc. 82 (1999) 797-818.
Google Scholar
[4]
P. Ming-Jen and R. A. Clive, A Brief Introduction to Ceramic Capacitors. IEEE Electr. Insulat. 26(3) (2010) 44-50.
Google Scholar
[5]
P. Sateesh, J.Omprakash, G.S. Kumar and G.Prasad, 2015. Studies of Phase Transition and Impedance Behavior of Ba(Zr,Ti)O3 Ceramics. J. Adv. Dielectr. 5(1) (2015) 13.
DOI: 10.1142/s2010135x15500022
Google Scholar
[6]
S.W. Kima , H.I. Choia , M.H. Leeb , J.S. Parkb , D.J. Kimb , D. Dob , M.H. Kimb , T.K. Songb and W.J. Kima, Electrical Properties and Phase of BaTiO3–SrTiO3 solid solution. Ceram. Int. 39 (2013) 487-490.
Google Scholar
[7]
X. Chao, J. wang, P. Liang, T. Zhang, L. Wei, Z. Yang, Phase transition and improved electrical performance of Ba0.85Ca0.15Zr0.1Ti0.9O3-Ca0.28Ba0.72Nb2O6 ceramics with high Curie temperature, Mater. Des. 89 (2016)n465-496.
DOI: 10.1016/j.matdes.2015.10.014
Google Scholar
[8]
Y. Zhang, L. Li, B. Shen and J. Zhai, Effect of orthorhombic-tetraganal phase transition on structure and piezoelectric properties of KNN-base lead -free ceramic. 44 (2015) 7797-7802.
DOI: 10.1039/c5dt00593k
Google Scholar
[9]
W. Li, Z. Xu, R. Chu, H. Zeng, K. Zhao, Enlarged polymorphic phase transition boundary and enhanced piezoelectricity in ternary component 0.8Ba1−xCaxTiO3–0.1BaTi0.8Zr0.2O3–0.1BaTi0.9Sn0.1 O3ceramics. 110 (2013) 80-82.
DOI: 10.1016/j.matlet.2013.08.008
Google Scholar
[10]
L.Wei, X. Zhijun, C. Ruiqing, Z. Huarong, Z. Kunyu, Enlarged polymorphic phase transition boundary and enhanced piezoelectricity in ternary component 0.8Ba1-xCaxTiO3-0.1BaTi0.8 Zr0.2O3-0.1BaTi0.9Sn0.1O3 ceramics. Mater.Lett. 110 (2013) 80-82.
DOI: 10.1016/j.matlet.2013.08.008
Google Scholar
[11]
H. Kaddoussi, A. Lahmar, Y.Gagou, J. L. Dellis, H. Khema, M. E. Marssi, Electro-caloric effectin lead-freeferroelectric Ba1-xCax(Zr0.1Ti0.9)0.925Sn0.075O3 ceramics. Ceram. Int. 40 (2015) 15103–15110.
DOI: 10.1016/j.ceramint.2015.08.080
Google Scholar
[12]
L. Dayun, Z. Xiaohong, Z. Yu, S. wei, Z. Jiliang, Large piezoelectric effect in (1-x)Ba(Zr0.15Ti0.85)O3-x(Ba0.8Sr0.2)TiO3 lead-free ceramics. Ceram. Int. 41 (2015) 8261- 8266.
DOI: 10.1016/j.ceramint.2015.03.017
Google Scholar
[13]
K. Manlika, P. Piewpan, I. Uraiwan, E. Sukum, T. Tawee, Effect of Particle Sizes of BaTiO3 (BT) Seed on Microstructure and Electrical Properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3, Key Eng Mater. 690 (2016) 51-56.
Google Scholar
[14]
S. Krit, , I. Uraiwan, E. Sukum, Influence of seed nano-crystals on electrical properties and phase transition behaviors of Ba0.85Sr0.15Ti0.90Zr0.10O3 ceramics prepared by seed-induced method, Electron. Mater. Lett. 11(3) (2015) 374-382.
DOI: 10.1007/s13391-015-4427-0
Google Scholar
[15]
F. Chao, L. LiangYan , Z. DongXiang, Influence of domain on grain size effects of the properties of BaTiO3 nano ceramics and nano particles, Phys B. 409 (2013) 83–86.
Google Scholar
[16]
H.T. Martirenat, J.C. Burfoot, Grain size effects on properties of some ferroelectric ceramics, J. Phys. C: Solid State Phys. 7 (1974) 1382-1390.
DOI: 10.1088/0022-3719/7/17/024
Google Scholar