Parameter Identification for Magnetic Pulse Welding Applications

Article Preview

Abstract:

Magnetic pulse welding (MPW) is a promising technology to join dissimilar metals and to produce multi-material structures, e.g. to fulfill lightweight requirements. During this impact welding process, proper collision conditions between both joining partners are essential for a sound weld formation. Controlling these conditions is difficult due to a huge number of influencing and interacting factors. Many of them are related to the pulse welding setup and the material properties of the moving part, the so-called flyer. In this paper, a new measurement system is applied that takes advantage of the high velocity impact flash. The flash is a side effect of the MPW process and its intensity depends on the impact velocity of the flyer. Thus, the intensity level can be used as a welding criterion. A procedure is described that enables the user to realize a fast parameter development with only a few experiments. The minimum energy level and the optimum distance between the parts to be joined can be identified. This is of importance since a low energy input decreases the thermal and mechanical shock loading on the tool coil and thus increases its lifetime. In a second step, the axial position of the flyer in the tool coil is adjusted to ensure a proper collision angle and a circumferential weld seam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

431-438

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Bellmann, J. Lueg-Althoff, S. Schulze, S. Gies, E. Beyer, A.E. Tekkaya, Measurement of Collision Conditions in Magnetic Pulse Welding Processes, Journal of Physical Science and Application 7 (2017) 1–10.

DOI: 10.17265/2159-5348/2017.04.001

Google Scholar

[2] J. Bellmann, G. Kirchhoff, J. Lueg-Althoff, S. Schulze, S. Gies, E. Beyer, A.E. Tekkaya, Magnetic Pulse Welding: Joining within Microseconds –High Strength Forever, in: American Welding Society and Japan Welding Society (Ed.), Proceedings of the 10th International Conference on Trends in Welding Research and 9th International Welding Symposium of Japan Welding Society, 2016, 91–94.

DOI: 10.3390/met9030348

Google Scholar

[3] B. Crossland, Explosive welding of metals and its application, Clarendon Press, Oxford (UK), (1982).

Google Scholar

[4] J. Bellmann, J. Lueg-Althoff, S. Schulze, S. Gies, E. Beyer, A.E. Tekkaya, Magnetic Pulse Welding: Solutions for Process Monitoring within Pulsed Magnetic Fields, in: V. Otero (Ed.), EAPPC & BEAMS & MEGAGAUSS 2016 - Proceedings, (2016).

DOI: 10.3390/met9030348

Google Scholar

[5] Z.A. Chankvetadze, Technological features of Magnetic Pulse Welding, and conditions under which the joint is formed, Avt. Svarka (1979) 30–32.

Google Scholar

[6] H. Dietz, H.-J. Lippmann, H. Schenk, Theorie des Magnetform Generators: Abgestufter Feldkonzentrator (1967).

Google Scholar

[7] V.F. Karpuhin, V.A. Glouschenkov, Lap Joint Length When Pulse-Magnetic Welding Tubular Parts, in: JOM-Internatinal Conf. 1999, 361–365.

Google Scholar

[8] A. Lorenz, J. Lueg-Althoff, J. Bellmann, G. Göbel, S. Gies, C. Weddeling, E. Beyer, A.E. Tekkaya, Workpiece Positioning during Magnetic Pulse Welding of Aluminum-Steel Joints, Welding journal 95 (2016) 101–109.

DOI: 10.4028/www.scientific.net/amr.966-967.489

Google Scholar

[9] Y.U. Haiping, L.I. Chufeng, Effects of current freguency on electromagnetic tube compression, Journal of Materials Processing Technology 209 (2009) 1053–1059.

DOI: 10.1016/j.jmatprotec.2008.03.011

Google Scholar

[10] J. Bellmann, J. Lueg-Althoff, S. Schulze, S. Gies, E. Beyer, A.E. Tekkaya, Measurement and analysis technologies for magnetic pulse welding, Adv. Manuf. (2016) p.322–339.

DOI: 10.1007/s40436-016-0162-5

Google Scholar

[11] G. Eichhorn, Analysis of the hypervelocity impact process from impact flash measurements, Planetary and Space Science 24 (1976) 771–781.

DOI: 10.1016/0032-0633(76)90114-8

Google Scholar

[12] C. Pabst, P. Groche, The Influence of Thermal and Mechanical Effects on the Bond Formation During Impact Welding, in: A.E. Tekkaya, M. Kleiner (Eds.), ICHSF 2016: Proceedings of the 7th International Conference on High Speed Forming, 2016, 309–320.

Google Scholar

[13] J. Bellmann, E. Beyer, J. Lueg-Althoff, S. Gies, A. Erman Tekkaya, S. Schettler, S. Schulze, Targeted Weld Seam Formation and Energy Reduction at Magnetic Pulse Welding (MPW), eBIS 2017 (2017) 91–102.

DOI: 10.17729/ebis.2017.5/10

Google Scholar

[14] Seeberger, Datasheet AlMgSi (EN AW-6060), http://www.seeberger.net/_assets/pdf/werkstoffe/aluminium/de/AlMgSi.pdf (accessed 8.09.2016).

Google Scholar

[15] Günther + Schramm, Datasheet C45 (1.0503), http://www.guenther-schramm-stahl.de/files/datasheets/C45(1.0503).pdf (accessed 8.09.2016).

Google Scholar

[16] DIN Deutsches Institut für Normung e.V., Schweißen und verwandte Prozesse – Einteilung von geometrischen Unregelmäßigkeiten an metallischen Werkstoffen -Teil 2: Pressschweißungen, Beuth Verlag GmbH, Berlin, 2013 (accessed 6.09.2016).

DOI: 10.31030/2061829

Google Scholar

[17] H. Dietz, H. Lippmann, H. Schenk, Theorie des Magnetform-Verfahrens: Erreichbarer Druck, ETZ-A (1969) p.217–222.

Google Scholar

[18] J.-P. Cuq-Lelandais, S. Ferreira, G. Avrillaud, G. Mazars, B. Rauffet, Magnetic Pulse Welding: welding windows and high velocity impact simulations, in: H. Huh, A.E. Tekkaya (Eds.), ICHSF2014: Proceedings of the 6th International Conference on High Speed Forming, 2014, 199–206.

Google Scholar

[19] V. Shribman, O. Gafri, Y. Livshitz, Magnetic pulse welding for automotive materials, in: D. Roessler (Ed.), Proceedings of the 2001 Global Powertrain Congress, 2001, 148–156.

DOI: 10.4271/2001-01-3408

Google Scholar

[20] J. Lueg-Althoff, A. Lorenz, S. Gies, C. Weddeling, G. Göbel, A.E. Tekkaya, Magnetic Pulse Welding by Electromagnetic Compression: Determination of the Impact Velocity, in: TU Darmstadt (Ed.), Proceedings of the 6th International Conference on Tribology in Manufactoring & Joining by Plastic Deformation, (2014).

DOI: 10.4028/www.scientific.net/amr.966-967.489

Google Scholar