[1]
A. Fleming, On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae, Br J Exp Pathol (10), 226–236, (1929).
Google Scholar
[2]
B. Crossland, Explosive Welding of Metals and Its Application, Oxford Series of Advanced Manufacturing 2, (1982).
Google Scholar
[3]
R. B. F. Le, V. Philipchuk, U.S. Patent 3,024,526 (1962).
Google Scholar
[4]
P. Groche, M. Becker, C. Pabst, Process window acquisition for impact welding processes, Materials & Design (118), 286-293, (2017).
DOI: 10.1016/j.matdes.2017.01.013
Google Scholar
[5]
S. H. Carpenter, R. H. Wittman, Explosion welding, Annual review of materials science (5), 177-199, (1975).
Google Scholar
[6]
D. A. Alexeevich, E. V. Vladimirovic, L. D. Nikolaevich, US Patent 3,520,049 (1970).
Google Scholar
[7]
V. Shribman, Magnetic pulse welding for dissimilar and similar materials, Pulsar Ltd, (2008).
Google Scholar
[8]
T. Aizawa, M. Kashani, K. Okagawa, Application of magnetic pulse welding for aluminum alloys and SPCC steel sheet joints, Welding Journal, (86), 119-124, (2007).
Google Scholar
[9]
R. Schäfer, P. Pasquale, S. Kallee, Industrial Application of the Electromagnetic Pulse Technology, PST products Gmbh, Alzenau, Germany, (2009).
Google Scholar
[10]
G. S. Daehn, J. C. Lippold, Low-temperature laser spot impact welding driven without contact, US Patent 8,084,710 (2011).
Google Scholar
[11]
H. Wang, D. Liu, G. Taber, J. C. Lippold, G. S. Daehn, Laser impact welding-process introduction and key variables, International Conference on High Speed Forming, (2012).
Google Scholar
[12]
X. Wang, Y. Gu, T. Qiu, Y. Ma, D. Zhang, H. Liu, An experimental and numerical study of laser impact spot welding, Materials and Design (65), 1143-1152, (2015).
DOI: 10.1016/j.matdes.2014.08.044
Google Scholar
[13]
G. R. Cowan, O. R. Bergmann, A. H. Holtzman, Mechanism of bond zone wave formation in explosion-clad metals, Metallurgical and Materials Transactions B (2), 3145-3155, (1971).
DOI: 10.1007/bf02814967
Google Scholar
[14]
J. N. Hunt, Wave formation in explosive welding. Philosophical magazine (17), (1968).
Google Scholar
[15]
A. S. Bahrani, T. J. Black, B. Crossland, The mechanics of wave formation in explosive welding, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (296), 123-136, (1967).
DOI: 10.1098/rspa.1967.0010
Google Scholar
[16]
P. V. Vaidyanathan, A. R. Ramanathan, Design for quality explosive welding, Journal of Materials Processing Technology (32), 439-448, (1992).
DOI: 10.1016/0924-0136(92)90200-c
Google Scholar
[17]
V. V. Pai, Y. L. Luk'yanov, G. E. Kuz'min,I. V. Yakovlev, Wave formation in a high-velocity symmetric impact of metal plates, Combustion, Explosion, and Shock Waves (42), (2006).
DOI: 10.1007/s10573-006-0094-7
Google Scholar
[18]
D. Jaramillo, A. Szecket, O. T. Inal, On the transition from a waveless to a wavy interface in explosive welding, Materials Science and Engineering (91) 217-222, (1987).
DOI: 10.1016/0025-5416(87)90300-4
Google Scholar
[19]
T. Onzawa, Y. Ishii, Study on wave formation in explosive bonding. Transactions of the Japan Welding Society (4), 233-240, (1973).
Google Scholar
[20]
T. Onzawa, Y. Ishii, Fundamental Studies on Explosive Welding: Observations of Metal jet and wavy pattern, Transactions of the Japan Welding Society (6), 98-104, (1975).
Google Scholar
[21]
S. R. Reid, N. H. S. Sherif, Prediction of the wavelength of interface waves in symmetric explosive welding, Journal of mechanical engineering science (18), 87-94, (1976).
DOI: 10.1243/jmes_jour_1976_018_016_02
Google Scholar
[22]
O. B. Drennov, About the state of two metal contact boundary at a high-velocity oblique impact, International journal of impact engineering, (23), 205-213, (1999).
DOI: 10.1016/s0734-743x(99)00073-1
Google Scholar
[23]
A. Ben-Artzy, A. Stern, N. Frage, V. Shribman, O., Sadot, Wave formation mechanism in magnetic pulse welding. International Journal of Impact Engineering (37), 397-404, (2010).
DOI: 10.1016/j.ijimpeng.2009.07.008
Google Scholar
[24]
F. Grignon, D. Benson, K. S. Vecchio, M. A. Meyers, Explosive welding of aluminum to aluminum: analysis, computations and experiments, International Journal of Impact Engineering (30), 1333-1351, (2004).
DOI: 10.1016/j.ijimpeng.2003.09.049
Google Scholar
[25]
C. Pabst, S. Sharafiev, P. Groche, M. F. Wagner,. A Novel Method to Investigate the Principles of Impact Welding: Development and Enhancement of a Test Rig, Experimental and Numerical Results, Advanced Materials Research (966), 500-509, (2014).
DOI: 10.4028/www.scientific.net/amr.966-967.500
Google Scholar
[26]
A. A. Mousavi, S. T. S. Al-Hassani, Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding, Journal of the Mechanics and Physics of Solids (53), 2501-2528, (2005).
DOI: 10.1016/j.jmps.2005.06.001
Google Scholar
[27]
A. A. Deribas, Physics of Hardening and Welding by Explosion, (1972).
Google Scholar
[28]
H. Date, S. Kobayakawa, M. Naka, Microstructure and bonding strength of impact-welded aluminium–stainless steel joints, Journal of Materials Processing Technology (85), (1999).
DOI: 10.1016/s0924-0136(98)00284-2
Google Scholar
[29]
G. R. Abrahamson, Permanent periodic surface deformations due to a traveling jet, Journal of applied mechanics (28), 519-528, (1961).
DOI: 10.1115/1.3641777
Google Scholar
[30]
M. P. Wilson, J. H. Brunton, Wave formation between impacting liquids in explosive welding and erosion, Nature (226), 538-541, (1971).
DOI: 10.1038/226538b0
Google Scholar
[31]
S. R. Reid, A discussion of the mechanism of interface wave generation in explosive welding, International Journal of Mechanical Sciences (16), (1974).
DOI: 10.1016/0020-7403(74)90014-9
Google Scholar
[32]
S. K. Godunov, A. A. Deribas, N. S. Kozin, Wave formation in explosive welding, Journal of Applied Mechanics and Technical Physics (12), 398-406, (1971).
DOI: 10.1007/bf00851622
Google Scholar
[33]
H. El-Sobky, T. Z. Blazynski, Experimental investigation of the mechanics of explosive welding by means of a liquid analogue, Proc. 5th International Conference on High Energy Rate fabrication,, (1975).
Google Scholar
[34]
A. Szecket, M. Mayseless, The triggering and controlling of stable interfacial conditions in explosive welding, Materials Science and Engineering, (57), 149-154, (1983).
DOI: 10.1016/0025-5416(83)90204-5
Google Scholar
[35]
J. L. Robinson, The mechanics of wave formation in impact welding, Philosophical Magazine (31), 587-597, (1975).
Google Scholar
[36]
G.R. Cowan, A. H. Holtzman, Flow configurations in colliding plates: explosive bonding, Journal of applied physics, (34), 928-939, (1963).
DOI: 10.1063/1.1729565
Google Scholar
[37]
J. F. Kowalick, D. R. Hay, A mechanism of explosive bonding, Metallurgical and Materials Transactions B, (2), 1953-1958, (1971).
DOI: 10.1007/bf02913429
Google Scholar
[38]
V. I. Lysak, S. V. Kuzmin, Lower boundary in metal explosive welding, Evolution of ideas. Journal of Materials Processing Technology (212), 150-156, (2012).
DOI: 10.1016/j.jmatprotec.2011.08.017
Google Scholar
[39]
M. H. Athar, B. Tolaminejad, Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding, Materials & Design (86), 516-525, (2015).
DOI: 10.1016/j.matdes.2015.07.114
Google Scholar
[40]
V. I. Lysak, S. V. Kuzmin, Energy balance during explosive welding, Journal of Materials Processing Technology (222), 356-364, (2015).
DOI: 10.1016/j.jmatprotec.2015.03.024
Google Scholar
[41]
M. D. Chadwick, D. Howd, G. Wildsmit, J. H. Cairns, Explosive welding of tubes and tube-plates, British Welding Journal (15), (1968).
Google Scholar