[1]
G. L. Harris, ed. Properties of silicon carbide, № 13, (1995).
Google Scholar
[2]
E. A. Belenkov, E. N. Agalyamova, V. A. Greshnyakov, Classification and structure of silicon carbide phases, Physics of the Solid State. 54 (2) (2012) 433-440.
DOI: 10.1134/s1063783412020072
Google Scholar
[3]
A. H. Gomes de Mesquita, Refinement of the crystal structure of SiC type 6H, Acta Crystallographica. 2 (4) (1967) 610-617.
DOI: 10.1107/s0365110x67003275
Google Scholar
[4]
M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur, ed. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe., John Wiley & Sons, (2001).
Google Scholar
[5]
A. A. Lebedev, SiC electronics in the new century, Journal of Wide Bandgap Materials. 8 (2) (2000) 129-136.
Google Scholar
[6]
B. Luchinin, Y. Tairov, The domestic semiconductor silicon carbide: a step towards parity, Modern Electronics. 7 (2009) 12-15.
Google Scholar
[7]
H. O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps., William Andrew, (1996).
Google Scholar
[8]
E. L. Kern, Thermal properties of β-Silicon Carbide from 20 to 2000 °C, Mater. Res. Bull. 4 (1969) 25-32.
Google Scholar
[9]
K. Watari, High thermal conductivity non-oxide ceramics, Journal of the Ceramic Society of Japan. 109 (1265) (2001) 7-16.
Google Scholar
[10]
K. J. Klabunde, R. Richards, ed. Nanoscale materials in chemistry, New York: Wiley-Interscience, (2001).
Google Scholar
[11]
R. A. Andrievski, Nano-sized silicon carbide: synthesis, structure and properties, Russian Chemical Reviews. 78 (9) (2009) 821.
DOI: 10.1070/rc2009v078n09abeh004060
Google Scholar
[12]
I. Carbide, ed. Nitride and Boride Materials Synthesis and Processing., Alan W. Weimer, (1997).
Google Scholar
[13]
G. Acheson, U. S. Patent 492,767 (1893).
Google Scholar
[14]
V. A. Karelin, et al., Obtaining the fine-grained silicon carbide, used in the synthesis of construction ceramics, Resource-Efficient Technologies. 2 (2) (2016) 50-60.
DOI: 10.1016/j.reffit.2016.06.002
Google Scholar
[15]
H. P. Martin, R. Ecke, and E. Müller, Synthesis of nanocrystalline silicon carbide powder by carbothermal reduction, Journal of the European Ceramic Society. 18 (12) (1998) 1737-1742.
DOI: 10.1016/s0955-2219(98)00094-6
Google Scholar
[16]
G. W. Meng, et al., Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO 2 xerogels containing carbon nanoparticles, Journal of crystal growth. 209 (4) (2000) 801-806.
DOI: 10.1016/s0022-0248(99)00435-2
Google Scholar
[17]
V. Raman, O. P. Bahl, U. Dhawan, Synthesis of silicon carbide through the sol-gel process from different precursors, Journal of materials science. 30 (10) (1995) 2686-2693.
DOI: 10.1007/bf00362153
Google Scholar
[18]
C. J. Brinker, et al., Sol-gel transition in simple silicates, Journal of Non-Crystalline Solids. 48 (1) (1982) 47-64.
DOI: 10.1016/0022-3093(82)90245-9
Google Scholar
[19]
E. D. Rodeghiero, et al., Sol–gel synthesis of ceramic matrix composites, Materials Science and Engineering: A. 244 (1) (1998) 11-21.
Google Scholar
[20]
A. A. Sivkov, A. Ya. Pak, R. F. Patent 2,431,947. (2011).
Google Scholar
[21]
Sivkov, A., et al., Plasma dynamic synthesis and obtaining ultradispersed zinc oxide with single-crystalline particle structure, Advanced Powder Technology, 27(4) (2016) 1506-1513.
DOI: 10.1016/j.apt.2016.05.012
Google Scholar
[22]
A. A. Evdokimov, et al., Obtaining ceramic based on Si3N4and TiN by spark plasma sintering. Glass and Ceramics, Glass and Ceramics, 72(9-10) (2016) 381-386.
DOI: 10.1007/s10717-016-9794-y
Google Scholar
[23]
A. A. Evdokimov et al., Possibility of implementation of the complete cycle of synthesizing bulk polycrystalline titanium nitride with submicron composition by plasmodynamic methods, Russian Physics Journal, 55(9) (2013) 983-991.
DOI: 10.1007/s11182-013-9911-0
Google Scholar