Dependence of the Product's Phase Composition on the Ratio of Precursors in Plasmadynamic Synthesis of Silicon Carbide

Article Preview

Abstract:

In this work, the powder of nanoscale cubic SiC was obtained by the plasmodynamic synthesis in a coaxial magnetoplasma accelerator (CMPA) with a graphite central electrode and an accelerator channel. The synthesis method allows obtaining a product with a high content of nanoscale cubic silicon carbide. The work is aimed to study the influence of the precursor’s ratio on the product. The synthesized products were analyzed by X-ray diffraction and transmission electron microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-119

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. L. Harris, ed. Properties of silicon carbide, № 13, (1995).

Google Scholar

[2] E. A. Belenkov, E. N. Agalyamova, V. A. Greshnyakov, Classification and structure of silicon carbide phases, Physics of the Solid State. 54 (2) (2012) 433-440.

DOI: 10.1134/s1063783412020072

Google Scholar

[3] A. H. Gomes de Mesquita, Refinement of the crystal structure of SiC type 6H, Acta Crystallographica. 2 (4) (1967) 610-617.

DOI: 10.1107/s0365110x67003275

Google Scholar

[4] M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur, ed. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe., John Wiley & Sons, (2001).

Google Scholar

[5] A. A. Lebedev, SiC electronics in the new century, Journal of Wide Bandgap Materials. 8 (2) (2000) 129-136.

Google Scholar

[6] B. Luchinin, Y. Tairov, The domestic semiconductor silicon carbide: a step towards parity, Modern Electronics. 7 (2009) 12-15.

Google Scholar

[7] H. O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps., William Andrew, (1996).

Google Scholar

[8] E. L. Kern, Thermal properties of β-Silicon Carbide from 20 to 2000 °C, Mater. Res. Bull. 4 (1969) 25-32.

Google Scholar

[9] K. Watari, High thermal conductivity non-oxide ceramics, Journal of the Ceramic Society of Japan. 109 (1265) (2001) 7-16.

Google Scholar

[10] K. J. Klabunde, R. Richards, ed. Nanoscale materials in chemistry, New York: Wiley-Interscience, (2001).

Google Scholar

[11] R. A. Andrievski, Nano-sized silicon carbide: synthesis, structure and properties, Russian Chemical Reviews. 78 (9) (2009) 821.

DOI: 10.1070/rc2009v078n09abeh004060

Google Scholar

[12] I. Carbide, ed. Nitride and Boride Materials Synthesis and Processing., Alan W. Weimer, (1997).

Google Scholar

[13] G. Acheson, U. S. Patent 492,767 (1893).

Google Scholar

[14] V. A. Karelin, et al., Obtaining the fine-grained silicon carbide, used in the synthesis of construction ceramics, Resource-Efficient Technologies. 2 (2) (2016) 50-60.

DOI: 10.1016/j.reffit.2016.06.002

Google Scholar

[15] H. P. Martin, R. Ecke, and E. Müller, Synthesis of nanocrystalline silicon carbide powder by carbothermal reduction, Journal of the European Ceramic Society. 18 (12) (1998) 1737-1742.

DOI: 10.1016/s0955-2219(98)00094-6

Google Scholar

[16] G. W. Meng, et al., Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO 2 xerogels containing carbon nanoparticles, Journal of crystal growth. 209 (4) (2000) 801-806.

DOI: 10.1016/s0022-0248(99)00435-2

Google Scholar

[17] V. Raman, O. P. Bahl, U. Dhawan, Synthesis of silicon carbide through the sol-gel process from different precursors, Journal of materials science. 30 (10) (1995) 2686-2693.

DOI: 10.1007/bf00362153

Google Scholar

[18] C. J. Brinker, et al., Sol-gel transition in simple silicates, Journal of Non-Crystalline Solids. 48 (1) (1982) 47-64.

DOI: 10.1016/0022-3093(82)90245-9

Google Scholar

[19] E. D. Rodeghiero, et al., Sol–gel synthesis of ceramic matrix composites, Materials Science and Engineering: A. 244 (1) (1998) 11-21.

Google Scholar

[20] A. A. Sivkov, A. Ya. Pak, R. F. Patent 2,431,947. (2011).

Google Scholar

[21] Sivkov, A., et al., Plasma dynamic synthesis and obtaining ultradispersed zinc oxide with single-crystalline particle structure, Advanced Powder Technology, 27(4) (2016) 1506-1513.

DOI: 10.1016/j.apt.2016.05.012

Google Scholar

[22] A. A. Evdokimov, et al., Obtaining ceramic based on Si3N4and TiN by spark plasma sintering. Glass and Ceramics, Glass and Ceramics, 72(9-10) (2016) 381-386.

DOI: 10.1007/s10717-016-9794-y

Google Scholar

[23] A. A. Evdokimov et al., Possibility of implementation of the complete cycle of synthesizing bulk polycrystalline titanium nitride with submicron composition by plasmodynamic methods, Russian Physics Journal, 55(9) (2013) 983-991.

DOI: 10.1007/s11182-013-9911-0

Google Scholar