Estimation of Local Elastic Moduli of Carbon-Containing Materials by Laser Ultrasound

Article Preview

Abstract:

The elastic properties of two carbon-containing materials are investigated. Shungite rock is a natural nanocomposite; isotropic pyrolytic graphite is an artificial material. Precision measurement of the local velocities of longitudinal and shear waves propagating in shungite and isotropic pyrographite samples was performed by laser ultrasonic techniques. Young's modulus, the shear modulus and Poisson's ratio are calculated, and the chemical composition of the samples is given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-101

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. N. Rozhkova, G. I. Yemelyanova, L. E. Gorlenko, A. V. Gribanov, V. V. Lunin, From Stable Aqueous Dispersion of Carbon Nanoparticles to the Clusters of Metastable Shungite Carbon, Glass Physics and Chemistry. 37 (2011) 613-618.

DOI: 10.1134/s1087659611060174

Google Scholar

[2] V. V. Kovalevski, P. R. Buseck, J. M. Cowley, Comparison of carbon in shungite rocks to other natural carbons: an X-ray and TEM study, Carbon. 39 (2001) 243-256.

DOI: 10.1016/s0008-6223(00)00120-2

Google Scholar

[3] M. Y. Yablokov, M. A. Augustyniak-Jabłokow, W. Kempinґski, J. Stankowski, Y. V. Yablokov Paramagnetic resonance of shungite - a natural nano-structured carbonaceous material. Physica Status Solidi (b), Vol. 243, pp. R66-R68 (2006).

DOI: 10.1002/pssb.200642226

Google Scholar

[4] V. V. Kovalevski, N. N. Rozhkova, À. Z. Zaidenberg, A. N. Yermolin, Fullerene-like structures in shungite and their physical properties, Molecular Materials. 4, (1994) 77-80.

Google Scholar

[5] D. Hoxha, A. Giraud, F. Homand, C. Auvray. Saturated and unsaturated behaviour modelling of Meuse-Haute, Marne argillite. International Journal of Plasticity. 23 (2007) 733-766.

DOI: 10.1016/j.ijplas.2006.05.002

Google Scholar

[6] Y. Jia, H. Bian, K. Su, D. Kondo, J. Shao. Elastoplastic damage modelling of desaturation and resaturation in argillites, International Journal for Numerical and Analytical Methods in Geomechanics. 34, (2010) 187-220.

DOI: 10.1002/nag.819

Google Scholar

[7] W. Q. Shen, J. F. Shao, D. Kondo, B. Gatmiri. A micro-macro model for clayey rocks with a plastic compressible porous matrix, International Journal of Plasticity. 36 (2012) 64-85.

DOI: 10.1016/j.ijplas.2012.03.006

Google Scholar

[8] A. Kravcov, P. Svoboda, A. Konvalinka, E.B. Cherepetskaya, I.E. Sas, N.A. Morozov, J. Zatloukal, J. Koťátková, Evaluation of Crack Formation in Concrete and Basalt Specimens under Cyclic Uniaxial Load Using Acoustic Emission and Computed X-Ray Tomography. Key Engineering Materials. 722 (2017).

DOI: 10.4028/www.scientific.net/kem.722.247

Google Scholar

[9] V. Magnenet, A. Giraud, C. Auvray. About the effect of relative humidity on the indentation response of Meuse/Haute–Marne argillite. Acta Geotechnica, 6 (2011) 155-166.

DOI: 10.1007/s11440-011-0143-6

Google Scholar

[10] C. Auvray, R. Giot, D. Grgic. Nano-indentation partially saturated argillite: experience device and measurements Proceedings of EUROCK 2013. Rock Mechanics for Resources, Energy and Environment, The 2013 ISRM European Rock Mechanics Symposium, A.A. Balkema, Wroclaw Poland, pp.201-205 (2013).

DOI: 10.1201/b15683-32

Google Scholar

[11] G. Constantinides, K. S., Ravi Chandran, F. J. Ulm, K. J. Van Vliet. Grid indentation analysis of composite microstructure and mechanics: principles and validation. Materials Science and Engineering: A.Vol. 430 (issues 1-2) (2006) 189-202.

DOI: 10.1016/j.msea.2006.05.125

Google Scholar

[12] C. Auvray, G. Arnold, G. Armand. Experimental study of elastic properties of different constituents of partially saturated argillites using nano-indentation tests. Engineering Geology. 191 (2015) 61-70.

DOI: 10.1016/j.enggeo.2015.02.010

Google Scholar

[13] G. Constantinides, F. J. Ulm. The nanogranular nature of C-S-H. Journal of the Mechanics and Physics of Solids. 55 (2007) 64-90.

Google Scholar

[14] A. Kravcov, P. Svoboda, A. Konvalinka, E.B. Cherepetskaya, A.A. Karabutov, D.V. Morozov, I.A. Shibaev. Laser-Ultrasonic Testing of the Structure and Properties of Concrete and Carbon Fiber-Reinforced Plastics, Key Engineering Materials. 722, (2017).

DOI: 10.4028/www.scientific.net/kem.722.267

Google Scholar

[15] N.B. Podymova, A.A. Karabutov and E.B. Cherepetskaya. Laser optoacoustic method for quantitative nondestructive evaluation of the subsurface damage depth in ground silicon wafers. Laser Physics, Vol. 24 (8) (2014).

DOI: 10.1088/1054-660x/24/8/086003

Google Scholar

[16] Karabutov A.A., Podymova N.B., Cherepetskaya E.B. Measuring the dependence of the local Young's modulus on the porosity of isotropic composite materials by a pulsed acoustic method using a laser source of ultrasound. Journal of Applied Mechanics and Technical Physics. 54 (3) (2013).

DOI: 10.1134/s0021894413030218

Google Scholar