Influence of Microwave and Electron Beam Irradiation on Composition of Aluminum Nanopowder

Article Preview

Abstract:

The influence of microwave irradiation (9.4 GHz) and electron beam (250 keV) on metal aluminum content in aluminum nanopowder is studied. It is established that after irradiation the content of metal aluminum in Al nanopowder increases. The most likely explanation is the reduction of aluminum ions Al3+ in the oxide shell at the surface of aluminum nanoparticles to produce metal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-95

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Gromov, U. Teipel, Metal Nanopowders: Production, Characterization, and Energetic Applications, Wiley-VCH, Weinheim, (2014).

DOI: 10.1002/9783527680696

Google Scholar

[2] N. Standish, H. Worner, Microwave Application in the Reduction of Metal Oxides with Carbon, Journal of Microwave Power and Electromagnetic Energy, 25 (3), (1990) 177-180.

DOI: 10.1080/08327823.1990.11688126

Google Scholar

[3] J.E. Bonevich, L.D. Marks, Electron radiation damage of α-alumina, Ultramicroscopy, 35 (1991) 161-166.

DOI: 10.1016/0304-3991(91)90101-b

Google Scholar

[4] A.P. Il'in, O.B. Nazarenko, D.V. Tikhonov, V.Ya. Ushakov, G.V. Yablunovskii, Structural and energy processes in electrically exploded conductors, Russ. Phys. J., 45 (12), (2002) 1176-1180.

Google Scholar

[5] A.P. Lyashko, G.G. Savel'ev, D.V. Tikhonov, The morphology, phase composition and oxidation behaviour of powders formed by the electric explosion of brass wires, Fizika i Khimiya Obrabotki Materialov 6 (1992) 127-130.

Google Scholar

[6] A.P. Il'in, A.A. Gromov, D.V. Tikhonov, G.V. Yablunovskii, M.A. Il'in, Properties of ultrafine aluminum powder stabilized by aluminum diboride, Comb., Expl. and Shock Waves, 38 (1), (2002) 123-126.

Google Scholar

[7] Mostovshchikov A.V., Ilyin A.P., Zakharova M.A., Structural and Energy State of Electro-Explosive Aluminum Nanopowder, Key Eng. Mat. 712 (2016) 215–219.

DOI: 10.4028/www.scientific.net/kem.712.215

Google Scholar

[8] Korshunov, A., Heyrovský, M. Dispersion of silver particles in aqueous solutions visualized by polarography/voltammetry, Electrochimica Acta. 54-26 (2009) 6264–6268.

DOI: 10.1016/j.electacta.2009.05.084

Google Scholar

[9] Korshunov A.V., Influence of dispersion aluminum powders on the regularities of their interaction with nitrogen, Russ. J. Phys. Chem. A. Vol. 85, 7 (2011) 1202-1210.

DOI: 10.1134/s0036024411070156

Google Scholar

[10] Korshunov, A.V., Il'In, A.P., Radishevskaya, N.I., Morozova, T.P. The kinetics of oxidation of aluminum electroexplosive nanopowders during heating in air, Russian Journal of Physical Chemistry A. 84-9 (2010) 1576–1584.

DOI: 10.1134/s0036024410090244

Google Scholar

[11] Korshunov, A., Heyrovský, M. Dispersion of silver particles in aqueous solutions visualized by polarography/voltammetry, Electrochimica Acta. 54-26 (2009) 6264–6268.

DOI: 10.1016/j.electacta.2009.05.084

Google Scholar

[12] A.V. Mostovshchikov, A.P. Il'in, P.Yu. Chumerin, Yu.G. Yushkov, V.A. Vaulin, B.A. Alekseev, The Influence of Microwave Radiation on the Thermal Stability of Aluminum Nanopowder, Tech. Phys. Lett. 42 (2016) 344–346.

DOI: 10.1134/s1063785016040118

Google Scholar

[13] A.V. Mostovshchikov, A.P. Ilyin, A.A. Azanov, I.S. Egorov, The Energy Stored in the Aluminum Nanopowder Irradiated by Electron Beam, Key Eng. Mat. 685 (2016) 639–642.

DOI: 10.4028/www.scientific.net/kem.685.639

Google Scholar

[14] A.V. Mostovshchikov, A.P. Ilyin, I.S. Egorov, D.V. Ismailov, Thermal Stability of Iron Micro- and Nanopowders after Electron Beam Irradiation, Key Eng. Mat. 712 (2016) 60-64.

DOI: 10.4028/www.scientific.net/kem.712.60

Google Scholar

[15] I. Egorov, M. Serebrennikov, Y .Isakova, A. Poloskov, Sectioned calorimeter for quick diagnostic of the electron beam energy distribution, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 875 (2017).

DOI: 10.1016/j.nima.2017.09.002

Google Scholar

[16] I. Egorov, V. Esipov, G. Remnev, M. Kaikanov, E. Lukonin, A. Poloskov, A high-repetition rate pulsed electron accelerator, Proceedings of the 2012 IEEE International Power Modulator and High Voltage Conference, 6518845 (2012) 716-719.

DOI: 10.1109/ipmhvc.2012.6518845

Google Scholar

[17] Perevezentseva D.O., Gorchakov E.V., Oskina Yu.A. Electrolytic behavior silver microphases and nanophases on the graphite electrode surface, Key Eng. Mat. 712 (2016) 117–122.

DOI: 10.4028/www.scientific.net/kem.712.117

Google Scholar

[18] Perevezentseva D.O., Skirdin K.V., Gorchakov E.V., Bimatov V.I. Electrochemical activity of methionine at graphite electrode modified with gold nanoparticles, Key Eng. Mat. 685 (2016) 563–568.

DOI: 10.4028/www.scientific.net/kem.685.563

Google Scholar

[19] Korshunov, A.V., Yosypchuk, B., Heyrovský, M. Voltammetry of aqueous chloroauric acid with hanging mercury drop electrode, Coll. Czech. Chem. Commun. 76-7 (2011) 929–936.

DOI: 10.1135/cccc2011064

Google Scholar

[20] Mostovshchikov A., Ilyin A., Zabrodina I., Morphology of Aluminum Nanopowder Combustion Products in a Magnetic Field in Air, Key Eng. Mat. 685 (2016) 516–520.

DOI: 10.4028/www.scientific.net/kem.685.516

Google Scholar

[21] Il'in A.P., Mostovshchikov A.V., and Timchenko N.A., Phase Formation Sequence in Combustion of Pressed Aluminum Nanopowder in Air Studied by Synchrotron Radiation, Combust. Explo. Shock. 49 (2013) 320–324.

DOI: 10.1134/s0010508213030088

Google Scholar

[22] Il'in A.P., Mostovshchikov A.V., Pak A.Ya., Effect of Uniform Magnetic and Electric Fields on Microstructure and Substructure Characteristics of Combustion Products of Aluminum Nanopowder in Air, Techn. Phys. 61 (2016) 1862–1865.

DOI: 10.1134/s1063784216120173

Google Scholar

[23] Mostovshchikov A.V., Ilyin A.P., Barabash N.S., Influence of Ultra-violet Radiation on Sublimation Energy of Silver Chloride (AgCl), Key Eng. Mat. 685 (2016) 735–738.

DOI: 10.4028/www.scientific.net/kem.685.735

Google Scholar

[24] Golushkova E.B., Ilyin A.P., Mostovshchikov A.V., Extraction of Oil Heteroatomic Compounds Using Metal Powders, Key Eng. Mat. 685 (2016) 743-747.

DOI: 10.4028/www.scientific.net/kem.685.743

Google Scholar

[25] Il'in A.P., Root L.O., and Mostovshchikov A.V., The Rise of Energy Accumulated in Metal Nanopowders, Techn. Phys. 57 (2012) 1178-1180.

DOI: 10.1134/s1063784212080129

Google Scholar

[26] Il'in A.P., Mostovshchikov A.V., and Root L.O., Growth of Aluminum Nitride Single Crystals under Thermal Explosion Conditions, Tech. Phys. Lett. 37 (2011) 965–966.

DOI: 10.1134/s1063785011100208

Google Scholar

[27] Ilyin A.P., Root L.O., Mostovshchikov A.V., The Influence of Aluminium Nanopowder Density on the Structure and Properties of its Combustion Products in Air, Key Eng. Mat. 685 (2016) 521-524.

DOI: 10.4028/www.scientific.net/kem.685.521

Google Scholar