Voltammetric Sensing System for the Detection of Cholesterol Based on the Ni-Bisurea-Pyrographite Composite

Article Preview

Abstract:

Cholesterol plays a crucial role in the human body. High cholesterol level in blood is a marker of CVDs. Therefore, cholesterol determination techniques are necessary for clinical practice. Currently used cholesterol determination techniques involve enzymes or expensive and complicated equipment. Electrochemical techniques are widely spread in test-systems and sensors construction. Novel modification procedure for enzymeless cholesterol determination is suggested in this study. The electrochemical behavior of cholesterol on modified electrode was studied with the usage of cyclic and differential pulse voltammetry. Obtained concentration range is linear from 0.1 up to 100 mM a conditions close to physiological (pH=6.86) with a quantification limit of 0.01 mM. Besides, the electrode surface morphology and pH-effect were studied. The developed technique is promising for the rapid determination of total cholesterol in blood.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-255

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Ikonen Cellular cholesterol trafficking and compartmentalization, Nat. Rev. Mol. Cell Biol. 9 (2008) 125–138.

DOI: 10.1038/nrm2336

Google Scholar

[2] S.-T.Yang, A. Kreutzberger, J. Lee, V. Kiessling, L.K. Tamm The role of cholesterol in membrane fusion, Chem. Phys. Lipids. 199 (2016) 136-143.

DOI: 10.1016/j.chemphyslip.2016.05.003

Google Scholar

[3] M. Moutinho, M.J. Nunes, E. Rodrigues Cholesterol 24-hydroxylase: Brain cholesterol metabolism and beyond, Biochim. Biophys. Acta. 1861(2016) 1911-(1920).

DOI: 10.1016/j.bbalip.2016.09.011

Google Scholar

[4] A.A. Gilep, T.A. Sushko, S.A. Usanov At the crossroads of steroid hormone biosynthesis: The role, substrate specificity and evolutionary development of CYP17, Biochim. Biophys. Acta. 1814 (2011) 200-209.

DOI: 10.1016/j.bbapap.2010.06.021

Google Scholar

[5] S. Ferdinandusse, S.M. Houten Peroxisomes and bile acid biosynthesis, Biochim. Biophys. Acta., 1763 (200) 1427-1440.

DOI: 10.1016/j.bbamcr.2006.09.001

Google Scholar

[6] B. Ruggiero, B.L. Padwa, K.M. Christoph, S. Zhou, J. Glowacki Vitamin D metabolism and regulation in pediatric MSCs, J. Steroid Biochem. 164 (2016) 287-291.

DOI: 10.1016/j.jsbmb.2015.09.025

Google Scholar

[7] P.R. Lawler, A.O. Akinkuolie, P.M Ridker, A.D. Sniderman, J.E. Buring, R.J. Glynn, D.I. Chasman, S. Mora Discordance between Circulating Atherogenic Cholesterol Mass and Lipoprotein Particle Concentration in Relation to Future Coronary Events, Clin.Chem. 63 (2016).

DOI: 10.1373/clinchem.2016.264515

Google Scholar

[8] D. Cruz, H. Ahmed, S. Jones, M. Elshazly, S. Martin Discordance in Lipid Measurements: Can we Capitalize to Better Personalize Cardiovascular Risk Assessment and Treatment?, Curr. Cardiovasc. Risk. Rep. 8(382) (2014) 2-8.

DOI: 10.1007/s12170-014-0382-9

Google Scholar

[9] J.E. Manson, Sh.S. Bassuk Biomarkers of cardiovascular disease risk in women, Metab. 64(3) (2015) s33-s39.

DOI: 10.1016/j.metabol.2014.10.028

Google Scholar

[10] P. Alagona, T. Ali Ahmad Cardiovascular Disease Risk Assessment and Prevention: Current Guidelines and Limitations, Med. Clin. North Am. 99(4) (2015) 711-731.

DOI: 10.1016/j.mcna.2015.02.003

Google Scholar

[11] Ch. Li, L. Yang, D. Zhang, W. Jiang Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer, Nutrition Res. 36(7) (2016) 627-635.

DOI: 10.1016/j.nutres.2016.04.009

Google Scholar

[12] J.R. Diamond, M.J. Karnovsky Exacerbation of chronic aminonucleoside nephrosis by dietary cholesterol supplementation, Kidney Int. 32(5) (1987) 671-677.

DOI: 10.1038/ki.1987.259

Google Scholar

[13] U. Saxena, A. Bikas Das Nanomaterials towards fabrication of cholesterol biosensors: Keyroles and design approaches, Biosens. Bioelectron. 75(2016) 196–205.

DOI: 10.1016/j.bios.2015.08.042

Google Scholar

[14] T. Rocha-Santos Sensors and biosensors based on magnetic nanoparticles, TrAC. 62 (2014) 28-36.

Google Scholar

[15] U. Saxena, M. Chakraborty, P. Goswami Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples, Biosens. Bioelectron. 26(6) (2011) 3037-3043.

DOI: 10.1016/j.bios.2010.12.009

Google Scholar

[16] Sh. Cao, L. Zhang, Ya. Chai, R.Yuan An integrated sensing system for detection of cholesterol based on TiO2–graphene–Pt–Pd hybrid nanocomposites, Biosens. Bioelectron. 42 (2013) 532–538.

DOI: 10.1016/j.bios.2012.10.048

Google Scholar

[17] M. Chebl, Z. Moussa, M. Peurla, D. Patra Polyelectrolyte mediated nano hybrid particle as a nano-sensor with outstandingly amplified specificity and sensitivity for enzyme free estimation of cholesterol, Talanta 169 (2017) 104-114.

DOI: 10.1016/j.talanta.2017.03.070

Google Scholar

[18] C. Justino, A. Duarte, T. Rocha-Santos Critical overview on the application of sensors and biosensors for clinical analysis, TrAC. 85 (2016) 36-60.

DOI: 10.1016/j.trac.2016.04.004

Google Scholar

[19] M. Ammam Electrochemical and electrophoretic deposition of enzymes: Principles, differences and application in miniaturized biosensor and biofuel cell electrodes, Biosens. Bioelectron. 58 (2014) 121-131.

DOI: 10.1016/j.bios.2014.02.030

Google Scholar

[20] X. Wang, X. Lu, J. Chen Development of biosensor technologies for analysis of environmental contaminants, TrEAC 58 (2014) 121-131.

Google Scholar

[21] K.V. Derina, E.I. Korotkova, E.V. Dorozhko, O.A. Voronova Voltammetric Determination of Cholesterol in Human Blood Serum, J. Anal. Chem. 72(8) (2017) 904-910.

DOI: 10.1134/s1061934817080068

Google Scholar

[22] L.K. Sal'keeva, E.K. Taishibekova, A.A. Bakibaev, E.V. Minaeva, B.K. Makin, L.M. Sugralina, A.K. Sal'keeva New phosphorylated glycoluril derivatives, Russ. J. Gen. Chem. 87(3) (2017) 442-446.

DOI: 10.1134/s1070363217030124

Google Scholar

[23] A.P. Il'in, O.B. Nazarenko, D.V. Tikhonov, V.Ya. Ushakov, G.V. Yablunovskii, Structural and energy processes in electrically exploded conductors, Russ. Phys. J., 45 (12), (2002) 1176-1180.

Google Scholar

[24] A.P. Lyashko, G.G. Savel'ev, D.V. Tikhonov, The morphology, phase composition and oxidation behaviour of powders formed by the electric explosion of brass wires, Fizika i Khimiya Obrabotki Materialov 6 (1992) 127-130.

Google Scholar

[25] A.P. Il'in, A.A. Gromov, D.V. Tikhonov, G.V. Yablunovskii, M.A. Il'in, Properties of ultrafine aluminum powder stabilized by aluminum diboride, Comb., Expl. and Shock Waves, 38 (1), (2002) 123-126.

Google Scholar

[26] A.V. Mostovshchikov, A.P. Ilyin, N.S. Barabash, Influence of Ultra-violet Radiation on Sublimation Energy of Silver Chloride (AgCl), Key Eng. Mat. 685 (2016) 735–738.

DOI: 10.4028/www.scientific.net/kem.685.735

Google Scholar

[27] Perevezentseva D.O., Gorchakov E.V., Oskina Yu.A. Electrolytic behavior silver microphases and nanophases on the graphite electrode surface, Key Eng. Mat. 712 (2016) 117–122.

DOI: 10.4028/www.scientific.net/kem.712.117

Google Scholar

[28] Perevezentseva D.O., Skirdin K.V., Gorchakov E.V., Bimatov V.I. Electrochemical activity of methionine at graphite electrode modified with gold nanoparticles, Key Eng. Mat. 685 (2016) 563–568.

DOI: 10.4028/www.scientific.net/kem.685.563

Google Scholar

[29] B. Yosypchuk, J. Barek, M. Fojta Carbon Powder Based Films on Traditional Solid Electrodes as an Alternative to Disposable Electrodes Electroanalysis 18 (11) (2006) 1126–1130.

DOI: 10.1002/elan.200503488

Google Scholar