[1]
E. Ikonen Cellular cholesterol trafficking and compartmentalization, Nat. Rev. Mol. Cell Biol. 9 (2008) 125–138.
DOI: 10.1038/nrm2336
Google Scholar
[2]
S.-T.Yang, A. Kreutzberger, J. Lee, V. Kiessling, L.K. Tamm The role of cholesterol in membrane fusion, Chem. Phys. Lipids. 199 (2016) 136-143.
DOI: 10.1016/j.chemphyslip.2016.05.003
Google Scholar
[3]
M. Moutinho, M.J. Nunes, E. Rodrigues Cholesterol 24-hydroxylase: Brain cholesterol metabolism and beyond, Biochim. Biophys. Acta. 1861(2016) 1911-(1920).
DOI: 10.1016/j.bbalip.2016.09.011
Google Scholar
[4]
A.A. Gilep, T.A. Sushko, S.A. Usanov At the crossroads of steroid hormone biosynthesis: The role, substrate specificity and evolutionary development of CYP17, Biochim. Biophys. Acta. 1814 (2011) 200-209.
DOI: 10.1016/j.bbapap.2010.06.021
Google Scholar
[5]
S. Ferdinandusse, S.M. Houten Peroxisomes and bile acid biosynthesis, Biochim. Biophys. Acta., 1763 (200) 1427-1440.
DOI: 10.1016/j.bbamcr.2006.09.001
Google Scholar
[6]
B. Ruggiero, B.L. Padwa, K.M. Christoph, S. Zhou, J. Glowacki Vitamin D metabolism and regulation in pediatric MSCs, J. Steroid Biochem. 164 (2016) 287-291.
DOI: 10.1016/j.jsbmb.2015.09.025
Google Scholar
[7]
P.R. Lawler, A.O. Akinkuolie, P.M Ridker, A.D. Sniderman, J.E. Buring, R.J. Glynn, D.I. Chasman, S. Mora Discordance between Circulating Atherogenic Cholesterol Mass and Lipoprotein Particle Concentration in Relation to Future Coronary Events, Clin.Chem. 63 (2016).
DOI: 10.1373/clinchem.2016.264515
Google Scholar
[8]
D. Cruz, H. Ahmed, S. Jones, M. Elshazly, S. Martin Discordance in Lipid Measurements: Can we Capitalize to Better Personalize Cardiovascular Risk Assessment and Treatment?, Curr. Cardiovasc. Risk. Rep. 8(382) (2014) 2-8.
DOI: 10.1007/s12170-014-0382-9
Google Scholar
[9]
J.E. Manson, Sh.S. Bassuk Biomarkers of cardiovascular disease risk in women, Metab. 64(3) (2015) s33-s39.
DOI: 10.1016/j.metabol.2014.10.028
Google Scholar
[10]
P. Alagona, T. Ali Ahmad Cardiovascular Disease Risk Assessment and Prevention: Current Guidelines and Limitations, Med. Clin. North Am. 99(4) (2015) 711-731.
DOI: 10.1016/j.mcna.2015.02.003
Google Scholar
[11]
Ch. Li, L. Yang, D. Zhang, W. Jiang Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer, Nutrition Res. 36(7) (2016) 627-635.
DOI: 10.1016/j.nutres.2016.04.009
Google Scholar
[12]
J.R. Diamond, M.J. Karnovsky Exacerbation of chronic aminonucleoside nephrosis by dietary cholesterol supplementation, Kidney Int. 32(5) (1987) 671-677.
DOI: 10.1038/ki.1987.259
Google Scholar
[13]
U. Saxena, A. Bikas Das Nanomaterials towards fabrication of cholesterol biosensors: Keyroles and design approaches, Biosens. Bioelectron. 75(2016) 196–205.
DOI: 10.1016/j.bios.2015.08.042
Google Scholar
[14]
T. Rocha-Santos Sensors and biosensors based on magnetic nanoparticles, TrAC. 62 (2014) 28-36.
Google Scholar
[15]
U. Saxena, M. Chakraborty, P. Goswami Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples, Biosens. Bioelectron. 26(6) (2011) 3037-3043.
DOI: 10.1016/j.bios.2010.12.009
Google Scholar
[16]
Sh. Cao, L. Zhang, Ya. Chai, R.Yuan An integrated sensing system for detection of cholesterol based on TiO2–graphene–Pt–Pd hybrid nanocomposites, Biosens. Bioelectron. 42 (2013) 532–538.
DOI: 10.1016/j.bios.2012.10.048
Google Scholar
[17]
M. Chebl, Z. Moussa, M. Peurla, D. Patra Polyelectrolyte mediated nano hybrid particle as a nano-sensor with outstandingly amplified specificity and sensitivity for enzyme free estimation of cholesterol, Talanta 169 (2017) 104-114.
DOI: 10.1016/j.talanta.2017.03.070
Google Scholar
[18]
C. Justino, A. Duarte, T. Rocha-Santos Critical overview on the application of sensors and biosensors for clinical analysis, TrAC. 85 (2016) 36-60.
DOI: 10.1016/j.trac.2016.04.004
Google Scholar
[19]
M. Ammam Electrochemical and electrophoretic deposition of enzymes: Principles, differences and application in miniaturized biosensor and biofuel cell electrodes, Biosens. Bioelectron. 58 (2014) 121-131.
DOI: 10.1016/j.bios.2014.02.030
Google Scholar
[20]
X. Wang, X. Lu, J. Chen Development of biosensor technologies for analysis of environmental contaminants, TrEAC 58 (2014) 121-131.
Google Scholar
[21]
K.V. Derina, E.I. Korotkova, E.V. Dorozhko, O.A. Voronova Voltammetric Determination of Cholesterol in Human Blood Serum, J. Anal. Chem. 72(8) (2017) 904-910.
DOI: 10.1134/s1061934817080068
Google Scholar
[22]
L.K. Sal'keeva, E.K. Taishibekova, A.A. Bakibaev, E.V. Minaeva, B.K. Makin, L.M. Sugralina, A.K. Sal'keeva New phosphorylated glycoluril derivatives, Russ. J. Gen. Chem. 87(3) (2017) 442-446.
DOI: 10.1134/s1070363217030124
Google Scholar
[23]
A.P. Il'in, O.B. Nazarenko, D.V. Tikhonov, V.Ya. Ushakov, G.V. Yablunovskii, Structural and energy processes in electrically exploded conductors, Russ. Phys. J., 45 (12), (2002) 1176-1180.
Google Scholar
[24]
A.P. Lyashko, G.G. Savel'ev, D.V. Tikhonov, The morphology, phase composition and oxidation behaviour of powders formed by the electric explosion of brass wires, Fizika i Khimiya Obrabotki Materialov 6 (1992) 127-130.
Google Scholar
[25]
A.P. Il'in, A.A. Gromov, D.V. Tikhonov, G.V. Yablunovskii, M.A. Il'in, Properties of ultrafine aluminum powder stabilized by aluminum diboride, Comb., Expl. and Shock Waves, 38 (1), (2002) 123-126.
Google Scholar
[26]
A.V. Mostovshchikov, A.P. Ilyin, N.S. Barabash, Influence of Ultra-violet Radiation on Sublimation Energy of Silver Chloride (AgCl), Key Eng. Mat. 685 (2016) 735–738.
DOI: 10.4028/www.scientific.net/kem.685.735
Google Scholar
[27]
Perevezentseva D.O., Gorchakov E.V., Oskina Yu.A. Electrolytic behavior silver microphases and nanophases on the graphite electrode surface, Key Eng. Mat. 712 (2016) 117–122.
DOI: 10.4028/www.scientific.net/kem.712.117
Google Scholar
[28]
Perevezentseva D.O., Skirdin K.V., Gorchakov E.V., Bimatov V.I. Electrochemical activity of methionine at graphite electrode modified with gold nanoparticles, Key Eng. Mat. 685 (2016) 563–568.
DOI: 10.4028/www.scientific.net/kem.685.563
Google Scholar
[29]
B. Yosypchuk, J. Barek, M. Fojta Carbon Powder Based Films on Traditional Solid Electrodes as an Alternative to Disposable Electrodes Electroanalysis 18 (11) (2006) 1126–1130.
DOI: 10.1002/elan.200503488
Google Scholar