The Frequency-Domain Algorithm for Ultrasonic Imaging of Complex-Shaped Objects

Article Preview

Abstract:

The algorithms based on Synthetic Aperture Focusing Technique are aimed at the determination of the imageries of the flaws in controlled objects. Ultrasonic imaging of complex-shaped objects requires specific algorithms which are able to take into account the complicated character of ultrasonic waves propagation. In this article, we suggested the novel frequency-domain algorithm for ultrasonic imaging of complex-shaped objects. This algorithm is based on Phase –shift migration theory and Stolt transform. The evaluation of suggested technique was done by the application of raw ultrasonic data which was obtained by using computer simulations. Derived results show that proposed algorithm is able to make accurate and precise imaging of flaws in complex-shaped objects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

262-268

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.A. Ploskov, V.I. Danilov, L.B. Zuev, A.S. Zavodchikov, I.O. Bolotina, D.V. Orlova, Evolution of strain localization autowaves in a zirconium alloy and evaluation of plasticity margin in a rolling area, J APPL MECH TECH PHY, 53 (2012) 611-615.

DOI: 10.1134/s0021894412040153

Google Scholar

[2] S. R. Doctor, T. E. Hall, L. D. Reid, SAFT - the evolution of a signal processing technology for ultrasonic testing, NDT INT, 193 (1986) 163-167.

DOI: 10.1016/0308-9126(86)90105-7

Google Scholar

[3] K. J. Langenberg, M. Berger, T. Kreutter, K. Mayer, V. Schmitz, Synthetic aperture focusing technique signal processing, NDT INT, 193 (1986) 177-189.

DOI: 10.1016/0308-9126(86)90107-0

Google Scholar

[4] D. Dolmatov, V. Zhvyrblya, G. Filippov, Y. Salchak, E. Sedanova, Advanced ultrasonic testing of complex shaped composite structures, IOP conf. ser. – mat. sci., 135 (2016) 012010.

DOI: 10.1088/1757-899x/135/1/012010

Google Scholar

[5] S. Chatillon, , G. Cattiaux, , M. Serre, O. Roy, Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer, Ultrasonics, 38(1) (2000) 131-134.

DOI: 10.1016/s0041-624x(99)00181-x

Google Scholar

[6] V. Zhvyrblya, G. Filippov, E. Sedanova, Y. Salchak, Ultrasonic tomography of complex shaped carbon fiber composites, MATEC web. conf., 48 (2016) 03005.

DOI: 10.1051/matecconf/20164803005

Google Scholar

[7] Y.C. Kim, R. Gonzalez, J.R. Berryhill, Recursive wavenumber-frequency migration, Geophysics, 54.3 (1989) 319-329.

DOI: 10.1190/1.1442657

Google Scholar

[8] C. Cafforio, C. Prati, F. Rocca, SAR data focusing using seismic migration techniques, IEEE T AERO ELEC SYS, 27.2 (1991) 194-207.

DOI: 10.1109/7.78293

Google Scholar

[9] A. S. Milman, SAR imaging by ω—κ migration, INT J REMOTE SENS, 14.10 (1993) 1965-(1979).

DOI: 10.1080/01431169308954015

Google Scholar

[10] P. T. Gough, D. W. Hawkins, Imaging algorithms for a strip-map synthetic aperture sonar: Minimizing the effects of aperture errors and aperture undersampling, IEEE J OCEANIC ENG, 22.1 (1997) 27-39.

DOI: 10.1109/48.557537

Google Scholar

[11] H. J. Callow, M. P. Hayes, P. T. Gough, Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple-receiver geometry, ELECTRON LETT, 38.7 (2002) 336-338.

DOI: 10.1049/el:20020219

Google Scholar

[12] T. Stepinski, An implementation of synthetic aperture focusing technique in frequency domain, IEEE T. ULTRASON. FERR., 54.7 (2007) 1399-1408.

DOI: 10.1109/tuffc.2007.400

Google Scholar

[13] A. J. Hunter, B. W. Drinkwater, P. D. Wilcox, The wavenumber algorithm for full-matrix imaging using an ultrasonic array, IEEE T. ULTRASON. FERR., 55.11 (2008) 2450-2462.

DOI: 10.1109/tuffc.952

Google Scholar

[14] M. H. Skjelvareid, T. Olofsson, Y. Birkelund, Synthetic Aperture Focusing of Ultrasonic Data From Multilayered Media Using an Omega-K Algorithm, IEEE T. ULTRASON. FERR., 58.5 (2011) 1037-1048.

DOI: 10.1109/tuffc.2011.1904

Google Scholar

[15] M. H. Skjelvareid, Y. Birkelund, Y. Larsen, Internal pipeline inspection using virtual source synthetic aperture ultrasound imaging, NDT&E INT, 54 (2013) 151-158.

DOI: 10.1016/j.ndteint.2012.10.005

Google Scholar

[16] M. H. Skjelvareid, Y. Birkelund, Y. Larsen, Synthetic aperture focusing of outwardly directed cylindrical ultrasound scans, IEEE T. ULTRASON. FERR., 59.11 (2012) 2460-2469.

DOI: 10.1109/tuffc.2012.2478

Google Scholar

[17] D. Dolmatov, D. Demyanyuk, A. Ozdiev, R. Pinchuk, Fourier-domain post-processing technique for Digital Focus Array imaging with Matrix phased array for ultrasonic testing of ITER components, FUSION ENG DES, 126 (2018) 124-129.

DOI: 10.1016/j.fusengdes.2017.11.020

Google Scholar

[18] D. Dolmatov, Y. Salchak, R. Pinchuk, Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays, MATEC web conf., 102 (2017) 1015.

DOI: 10.1051/matecconf/201710201015

Google Scholar

[19] R.H. Stolt, Migration by Fourier transform, Geophysics, 43.1 (1978) 23-48.

Google Scholar

[20] J. Gazdag, Wave equation migration with the phase-shift method, Geophysics 43.1 (1978) 1342-1351.

DOI: 10.1190/1.1440899

Google Scholar

[21] G.F. Margrave, R.J. Ferguson, Wavefield extrapolation by nonstationary phase shift, Geophysics 64.4 (1999) 1067-1078.

DOI: 10.1190/1.1444614

Google Scholar

[22] P. Calmon, S. Mahaut, S. Chatillon, R. Raillon, CIVA: An expertise platform for simulation and processing NDT data, Ultrasonics, 44 (2006) 975-979.

DOI: 10.1016/j.ultras.2006.05.218

Google Scholar