High Temperature Coatings for Oxidation and Erosion Protection of Heat-Resistant Carbonaceous Materials in High-Speed Flows

Article Preview

Abstract:

Modern approaches to the creation of single-layer and multi-layer high-temperature coatings for the protection of heat-resistant carbon-containing composite materials from oxidation and erosion in the high-speed fluxes of oxygen-containing gases are analyzed. Particularly have been outlined the heat-resistant coatings, the main components of which are either super refractory transition metal borides (ZrB2, HfB2, TiB2) with the addition of carbides (SiC, ZrC, HfC, TiC, TaC), silicides (MoSi2, TiSi2, ZrSi2, TaSi2, WSi2) and nitrides (HfN, ZrN, TiN), or refractory oxides (HfO2, ZrO2), or more complex synthetic compositions based on oxide ceramics. The results of fire gas-dynamic tests of coatings of perspective compositions are presented. The potential architecture of ultra-high-temperature coatings with high efficiency of protective action is justified.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-117

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.G. Rohini, R.K. Rama, Carbon-carbon composites – an overview. Defence Sci. J. 43(4) (1993) 369-383.

Google Scholar

[2] S. Zhang, Y. Zhang, A. Li et al., Carbon composites, in: X-S. Yi, S. Du, L. Zhang, (Eds.), Composite Materials Engineering, Vol. 2, Springer, Singapore, 2018, pp.531-617.

Google Scholar

[3] J.E. Sheehan, K.W. Buesking, B.J. Sullivan, Carbon-carbon composites, Annu. Rev. Mater. Sci. 24 (1994) 19-44.

DOI: 10.1146/annurev.ms.24.080194.000315

Google Scholar

[4] N.S. Jacobson, D.M. Curry oxidation microstructure studies of reinforced carbon/carbon, Carbon. 44 (2006) 1142-1150.

DOI: 10.1016/j.carbon.2005.11.013

Google Scholar

[5] V.I. Kostikov, A.N. Varenkov, Ultrahigh-temperature composite materials, Intermet Engineering, Moscow, (2003).

Google Scholar

[6] M. Bacos, Carbon-carbon composites: Oxidation behavior and coatings protection, J. Phys. IV France. 03(C7) (1993) 1895-1903. DOI: https://doi.org/10.1051/jp4:19937303.

DOI: 10.1051/jp4:19937303

Google Scholar

[7] X. Yang, C. Zhao-hui, C. Feng, High-temperature protective coatings for C/SiC composites, J. Asian Ceram. Soc. 2 (2014) 305-309.

DOI: 10.1016/j.jascer.2014.07.004

Google Scholar

[8] V.S. Terentieva, A.I. Eremina, A.N. Astapov et al., Influence of the architecture and elemental-chemical composition on the structure and properties of carbonaceous composite materials, Composites: Mechanics, Computations, Applications. 2(3) (2011).

DOI: 10.1615/compmechcomputapplintj.v2.i3.60

Google Scholar

[9] P.A. Thrower, J.C. Bognet, G.K. Mathew, The influence of oxidation on the structure and strength of graphite-I: Materials of different structure, Carbon. 20(6) (1982) 457-464.

DOI: 10.1016/0008-6223(82)90081-1

Google Scholar

[10] J.L. Wood, J.X. Zhao, R.C. Bradt, Jr.P.L. Walker, The effect of oxidation on the flexural strength of graphite, Carbon. 19(1) (1981) 61-62.

DOI: 10.1016/0008-6223(81)90105-6

Google Scholar

[11] K.L. Luthra, Oxidation of carbon/carbon composites – A theoretical analysis. Carbon. 26 (1988) 217-224.

DOI: 10.1016/0008-6223(88)90040-1

Google Scholar

[12] P.A. Thrower, J.C. Bognet, Mathew G.K. The influence of oxidation on the structure and strength of graphite-I: materials of different structure, Carbon. 20(6) (1982) 465-471.

DOI: 10.1016/0008-6223(82)90081-1

Google Scholar

[13] J. Rodriguez-Mirasol, P.A. Thrower, L.R. Radovic, On the oxidation resistance of carbon-carbon composites: Importance of fiber structure for composite reactivity, Carbon. 33(4) (1995) 545-554.

DOI: 10.1016/0008-6223(94)00180-8

Google Scholar

[14] Q. Li, S. Dong, Z. Wang et al., Fabrication and properties of 3-D Cf/SiC–ZrC composites, using ZrC precursor and polycarbosilane, J. Am. Ceram. Soc. 95(4) (2012) 1216-1219.

DOI: 10.1111/j.1551-2916.2012.05116.x

Google Scholar

[15] X. Wu, L.R. Radovic, Inhibition of catalytic oxidation of carbon/carbon composites by boron-doping, Carbon. 43(8) (2005) 1768-1777.

DOI: 10.1016/j.carbon.2005.02.029

Google Scholar

[16] S.E. Yoo, M.K. Seo, B.S. Kim, S.J. Park, Effect of MoO3 on mechanical interfacial behavior and anti-oxidation of carbon fibers-reinforced composites, J. Ind. Eng. Chem. 30 (2015) 29-32.

DOI: 10.1016/j.jiec.2015.04.025

Google Scholar

[17] Q. Feng, Z. Wang, H.J. Zhou et al., Microstructure analysis of Cf/SiC–ZrC composites in both fabrication and plasma wind tunnel testing processes, Ceram. Int. 40(1) (2014) 1199-1204.

DOI: 10.1016/j.ceramint.2013.05.097

Google Scholar

[18] Z.H. Yang, H. Zhang, Y.C. Ye, Preparation of Cf/HfC composite by reactive meltinfiltration using Hf-based alloy, Mater. Sci. Forum. 816 (2015) 126-132.

DOI: 10.4028/www.scientific.net/msf.816.126

Google Scholar

[19] F. Uhlmann, C. Wilhelmi, S. Schmidt-Wimmer et al., Preparation and characterization of ZrB2 and TaC containing Cf/SiC composites via polymer-infiltration-pyrolysis process, J. Eur. Ceram. Soc. 37(5) (2017) 1955-(1960).

DOI: 10.1016/j.jeurceramsoc.2016.12.048

Google Scholar

[20] S. Labruquère, H. Blanchard, R. Pailler et al., Enhancement of the oxidation resistance of interfacial area in C/C composites. Part I: Oxidation resistance of B–C, Si–B–C and Si–C coated carbon fibres, J. Eur. Ceram. Soc. 22(7) (2002) 1001-1009.

DOI: 10.1016/s0955-2219(01)00410-1

Google Scholar

[21] L.A. Tkachenko, A.Yu. Shaulov, A.A. Berlin, Protective heat-resistant coatings of carbon materials, Inorg. Mater. 48(3) (2012) 261-271.

Google Scholar

[22] K.-D. Xia, C.-X. Lu, Y. Yang, Improving the oxidation resistance of carbon fibers using silicon oxycarbide coatings, New Carbon Mater. 30(3) (2015) 236-243.

DOI: 10.1016/s1872-5805(15)60188-3

Google Scholar

[23] Y.-Z. Yang, J.-L. Yang, D.-N. Fang, Research progress on thermal protection materials and structures of hypersonic vehicles, Appl. Math. Mech. 29(1) (2008) 51-60.

DOI: 10.1007/s10483-008-0107-1

Google Scholar

[24] V.S. Terentieva, O.P. Bogachkova, E.V. Goryacheva, RF Patent No. 94008267/02. (1994).

Google Scholar

[25] Y. Yang, K. Li, G. Liu et al., Ablation-resistant composite coating of HfC-TaC-SiC for C/C composites deposited by supersonic atmospheric plasma spraying, J. Ceram. Sci. Technol. 7(4) (2016) 379-386.

DOI: 10.1177/0963693519869944

Google Scholar

[26] G.V. Molev, N.S. Mirzabekyants, Ways to increase the resistance of carbon materials to oxidation in air at elevated temperatures, Solid Fuel Chem. 1 (1998) 89-100.

Google Scholar

[27] G.A. Kravetsky, V.V. Rodionova, Yu.M. Dvoryanchikov, S.A. Kolesnikov, Carbon-ceramic composite materials with protective erosion-resistant coatings, New Refractories. 2 (2007) 47-53.

DOI: 10.1007/s11148-007-0027-3

Google Scholar

[28] E.A. Afanasyev, Yu.F. Klimov, R.I. Burikova, RF Patent No 2004104295/04. (2004).

Google Scholar

[29] S.S. Solntsev, N.V. Isayeva, V.V. Shvagireva, G.A. Solovyova, RF Patent No 2000130627/03. (2000).

Google Scholar

[30] V.I. Zmiy, S.G. Rudenky, V.V. Kunchenko et al. Heat-resistant complex coatings on carbon materials, Probl. At. Sci. Tech. 2(90) (2014) 158-161.

Google Scholar

[31] V.S. Terentieva, A.N. Astapov, A.I. Eremin, RF Patent No 2012146451/03. (2012).

Google Scholar

[32] B. Zou, Y. Hui, W. Huang et al., Oxidation protection of carbon/carbon composites with a plasma-sprayed ZrB2–SiC–Si/Yb2SiO5/LaMgAl11O19 coating during thermal cycling, J. Eur. Ceram. Soc. 35 (2015) 2017-(2025).

DOI: 10.1016/j.jeurceramsoc.2015.01.015

Google Scholar

[33] A.N. Astapov, V.S. Terentieva, Review of domestic designs in the field of protecting carbonaceous materials against gas corrosion and erosion in high-speed plasma fluxes, Russ. J. Non-Ferrous Met. 57(2) (2016) 157-173.

DOI: 10.3103/s1067821216020048

Google Scholar

[34] T.L. Dhami, O.P. Bahl, B.R. Awasthy, Oxidation-resistant carbon-carbon composites up to 1700 °C, Carbon. 33 (1995) 479-490.

DOI: 10.1016/0008-6223(94)00173-w

Google Scholar

[35] J.-K. Yoon, G.-H. Kim, K.-T. Hong et al., US Patent 2006003567 A1. (2004).

Google Scholar

[36] R. Shao, US Patent 2007172659 A1. (2006).

Google Scholar

[37] X. Yang, L. Wei, W. Song, Oxidation behavior of oxidation protective coatings for PIP–C/SiC composites at 1500 °C, Ceram. Int. 38 (2012) 9-13.

DOI: 10.1016/j.ceramint.2011.06.063

Google Scholar

[38] T.L. Dhami, O.P. Bahl, Challenges in carbon/carbon composites technologies, Carbon Sci. 6(3) (2005) 148-157.

Google Scholar

[39] W.G. Fahrenholtz, The ZrB2 volatility diagram, J. Am. Ceram. Soc. 88 (2005) 3509-3512.

Google Scholar

[40] X. Jin, X. Fan, C. Lu, T. Wang, Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites, J. Eur. Ceram. Soc. 38(1) (2018) 1-28.

DOI: 10.1016/j.jeurceramsoc.2017.08.013

Google Scholar

[41] W.C. Tripp, H.C. Graham, Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800 to 1500 °C, J. Electrochem. Soc. 118 (1971) 1195-1199.

DOI: 10.1149/1.2408279

Google Scholar

[42] S.R. Levine, E.J. Opila, M.C. Halbig et al., Evaluation of ultra-high temperature ceramics for aero propulsion use, J. Eur. Ceram. Soc. 22 (2002) 2757-2767.

DOI: 10.1016/s0955-2219(02)00140-1

Google Scholar

[43] Z. Chen, X. Xiong, G.D. Li et al., Texture structure and ablation behavior of TaC coating on carbon/carbon composites, Appl. Surf. Sci. 257 (2010) 656-661.

DOI: 10.1016/j.apsusc.2010.07.064

Google Scholar

[44] M.M. Opeka, I.G. Talmy, J.A. Zaykoski, Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: Theoretical considerations and historical experience, J. Mater. Sci. 39 (2004) 5887-5904.

DOI: 10.1023/b:jmsc.0000041686.21788.77

Google Scholar

[45] R. Rao, V. Venugopal, Kinetics and mechanism of the oxidation of ZrC, J. Alloys Compd. 206 (1994) 237-242.

DOI: 10.1016/0925-8388(94)90042-6

Google Scholar

[46] G.D. Li, X. Xiong, B.Y. Huang, Y.L. Zeng, Oxidized characteristic and oxidized mechanism of TaC coating, Chin. J. Non-Ferrous Met. 17(3) (2007) 360-367.

Google Scholar

[47] S.F. Tang, C.L. Hu, Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: A review, J. Mater. Sci. Technol. 33 (2017) 117–130.

DOI: 10.1016/j.jmst.2016.08.004

Google Scholar

[48] D. Cho, B. Yoon, Microstructural interpretation of the effect of various matrices on the ablation properties of carbon-fiber-reinforced composites, Compos. Sci. Technol, 61(2) (2001) 271-280.

DOI: 10.1016/s0266-3538(00)00212-8

Google Scholar

[49] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc. 90(5) (2007) 1347-1364.

DOI: 10.1111/j.1551-2916.2007.01583.x

Google Scholar

[50] A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, D.T. Ellerby, High-strength zirconium diboride-based ceramics, J. Am. Ceram. Soc. 87 (2004) 1170-1172.

DOI: 10.1111/j.1551-2916.2004.01170.x

Google Scholar

[51] F. Monteverde, A. Bellosi, S. Guicciardi, Processing and properties of zirconium diboride-based composites, J. Eur. Ceram. Soc. 22 (2002) 279-288.

DOI: 10.1016/s0955-2219(01)00284-9

Google Scholar

[52] S. Ran, S.G. Huang, O. Van der Biest, J. Vleugels, High-strength ZrB2-based ceramics prepared by reactive pulsed electric current sintering of ZrB2–ZrH2 powders, J. Eur. Ceram. Soc. 32 (2012) 2537-2543.

DOI: 10.1016/j.jeurceramsoc.2012.02.035

Google Scholar

[53] P. Franke, D. Neuschütz (Eds.), Binary systems. Part 2: Elements and Binary Systems from B – C to Cr – Zr. Springer, Berlin, Heidelberg, (2004).

DOI: 10.1007/b76783

Google Scholar

[54] P.S. Sokolov, V.A. Mukhanov, T. Shovo, V.L. Solozhenko, On the melting of silicon carbide under pressure, Journal of Superhard Materials. 5 (2012) 76-78.

DOI: 10.3103/s1063457612050097

Google Scholar

[55] Y.L. Wang, X. Xiong, X.J. Zhao et al., Structural evolution and ablation mechanism of a hafnium carbide coating on a C/C composite in an oxyacetylene torch environment, Corros. Sci. 61 (2012) 156-161.

DOI: 10.1016/j.corsci.2012.04.033

Google Scholar

[56] S.L. Wang, K.Z. Li, H.J. Li, Y.L. Zhang, Microstructure and ablation resistance of ZrC nanostructured coating for carbon/carbon composites, Mater. Lett. 107 (2013) 99-102.

DOI: 10.1016/j.matlet.2013.05.124

Google Scholar

[57] H. Wu, H-J. Li, Q.-G. Fu et al., Microstructures and ablation resistance of ZrC coating for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying, J. Therm. Spray Technol. 20 (2011) 1286-1291.

DOI: 10.1007/s11666-011-9676-3

Google Scholar

[58] Y. Zeng, D. Wang, X. Xiong et al., Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000 °C, Nat. Commun. 8(15836) (2017) 1-9.

Google Scholar

[59] X. Xiong, Y.L. Wang, G.D. Li et al. HfC/ZrC ablation protective coating for carbon/carbon composites, Corros. Sci. 77 (2013) 25-30.

DOI: 10.1016/j.corsci.2013.06.042

Google Scholar

[60] Y.L. Wang, X. Xiong, G.D. Li et al., Preparation and ablation properties of Hf (Ta)C co-deposition coating for carbon/carbon composites, Corros. Sci. 66 (2013) 177-182.

DOI: 10.1016/j.corsci.2012.09.016

Google Scholar

[61] E.L. Courtright, J.T. Prater, G.R. Holcomb et al., Oxidation of hafnium carbide and hafnium carbide with additions of tantalum and praseodymium, Oxid. Met. 36 (1991) 423-437.

DOI: 10.1007/bf01151590

Google Scholar

[62] A.A. Appen. Temperature Resistant Inorganic Coatings, Chemistry, Leningrad, (1976).

Google Scholar

[63] G.V. Bobrov, A.A. Ilin, Application of Inorganic Coatings (Theory, Technology, Equipment), Intermet Engineering, Moscow, (2004).

Google Scholar

[64] V.S. Terentieva, A.N. Astapov, A.I. Eremin, Analysis of prospective antioxidant coatings for high-temperature carbon-containing composite materials (review), Corrosion: Materials, Protection. 1 (2014) 30-42.

Google Scholar

[65] G.V. Samsonov, A.P. Epik, Refractory Coatings, Metallurgy, Moscow, (1973).

Google Scholar

[66] D. Wang, Y. Zeng, X. Xiong et al., Preparation and ablation properties of ZrB2-SiC protective laminae for carbon/carbon composites, Ceram. Int. 40 (2014) 14215-14222.

DOI: 10.1016/j.ceramint.2014.06.010

Google Scholar

[67] M. Pavese, P. Fino, C. Badini et al., HfB2/SiC as a protective coating for 2D Cf/SiC composites: Effect of high temperature oxidation on mechanical properties, Surf. Coat. Technol. 202 (2008) 2059-(2067).

DOI: 10.1016/j.surfcoat.2007.08.037

Google Scholar

[68] K. Shugart, B. Patterson, D. Lichtman et al., Mechanisms for variability of ZrB2-30 vol% SiC oxidation kinetics, J. Am. Ceram. Soc. 97(7) (2014) 2279-2285.

DOI: 10.1111/jace.12911

Google Scholar

[69] V.V. Rodionova, G.A. Kravetsky, N.M. Shestakova, Patent 2082694 RF, MPK6 C04В35/52, C04В41/87. (1997).

Google Scholar

[70] Y.-L. Zhang, H.-J. Li, X.-Y. Yao et al., Oxidation protection of C/SiC coated carbon/carbon composites with Si-Mo coating at high temperature, Corros. Sci. 53 (2011) 2075-(2079).

DOI: 10.1016/j.corsci.2011.02.024

Google Scholar

[71] J.-F. Huang, B. Wang, H.-J. Li et al., A MoSi2/SiC oxidation protective coating for carbon/carbon composites, Corros. Sci. 53 (2011) 834-839.

DOI: 10.1016/j.corsci.2010.11.024

Google Scholar

[72] Y. Zhi-Qiao, X. Xiang, X. Peng et al., A multilayer coating of dense SiC alternated with porous Si-Mo for the oxidation protection of carbon/carbon silicon carbide composites, Carbon. 46 (2008) 149-153.

DOI: 10.1016/j.carbon.2007.10.035

Google Scholar

[73] H. Liping, N. Yaran, Z. Xuebin, Patent CN105695917A, C23C4/10. (2016).

Google Scholar

[74] T. Feng, H.J. Li, M.H. Hu et al., Oxidation and ablation resistance of Fe2O3 modified ZrB2-SiC-Si coating for carbon/carbon composites, Ceram. Int. 42 (2016) 270-278.

DOI: 10.1016/j.ceramint.2015.08.105

Google Scholar

[75] J.R. Strife, J.E. Sheehan, Ceramic coatings for carbon-carbon composites, Ceram. Bull. 67(2) (1988) 369-374.

Google Scholar

[76] G. Li, X. Xiong, B. Huang, K. Huang, Structural characteristics and formation mechanisms of crack-free multilayer TaC/SiC coatings on carbon-carbon composites, Trans. Nonferrous. Met. Soc. China. 18 (2008) 255-261.

DOI: 10.1016/s1003-6326(08)60045-x

Google Scholar

[77] Y.J. Wang, H.J. Li, Q.G. Fu et al., Ablative property of HfC-based multilayer coating for C/C composites under oxyacetylene torch, Appl. Surf. Sci. 257 (2011) 4760-4763.

DOI: 10.1016/j.apsusc.2010.11.020

Google Scholar

[78] Y. Wang, H. Li, Q. Fu et al. SiC/HfC/SiC ablation resistant coating for carbon/carbon composites, Surf. Coat. Technol. 206 (2012) 3883-3887.

DOI: 10.1016/j.surfcoat.2012.03.039

Google Scholar

[79] Q. Liu, L. Zhang, J. Liu et al., The oxidation behavior of SiC-ZrC-SiC-coated C/SiC minicomposites at ultrahigh temperatures, J. Am. Ceram. Soc. 93 (2010) 3990-3992.

DOI: 10.1111/j.1551-2916.2010.04178.x

Google Scholar

[80] H. Wu, H.J. Li, C. Ma et al., MoSi2-based oxidation protective coatings for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying, J. Eur. Ceram. Soc. 30 (2010) 3267-3270.

DOI: 10.1016/j.jeurceramsoc.2010.06.007

Google Scholar

[81] Y.J. Wang, H.J. Li, Q.G. Fu et al., Ablation behaviour of a TaC coating on SiC coated C/C composites at different temperatures, Ceram. Int. 39 (2013) 359-365.

DOI: 10.1016/j.ceramint.2012.06.034

Google Scholar

[82] Y. Yang, K. Li, Z. Zhao, H. Li, Ablation resistance of HfC-SiC coating prepared by supersonic atmospheric plasma spraying for SiC-coated C/C composites, Ceram. Int. 42 (2016) 4768-4774.

DOI: 10.1016/j.ceramint.2015.11.161

Google Scholar

[83] Y. Yang, K. Li, G. Liu, Z. Zhao, Ablation mechanism of HfC-HfO2 protective coating for SiC-coated C/C composites in an oxyacetylene torch environment, J. Mater. Sci. Technol. 33(10) (2017) 1195-1202.

DOI: 10.1016/j.jmst.2016.11.010

Google Scholar

[84] Y. Yang, K. Li, Z. Zhao, G. Liu, HfC-ZrC-SiC multiphase protective coating for SiC-coated C/C composites prepared by supersonic atmospheric plasma spraying, Ceram. Int. 43 (2017) 1495-1503.

DOI: 10.1016/j.ceramint.2016.10.120

Google Scholar

[85] E.P. Simonenko, New Approaches to the Synthesis of Refractory Nanocrystalline Carbides and Oxides and the Production of Ultrahigh-Temperature Ceramic Materials Based on Hafnium Diboride: PhD Thesis, Russian Academy of Sciences, Moscow, (2016).

Google Scholar

[86] Y. Jia, H. Li, Q. Fu et al., Ablation behavior of ZrC-La2O3 coating for SiC-coated carbon/carbon composites under an oxyacetylene torch, Ceram. Int. 42 (2016) 14236-14245.

DOI: 10.1016/j.ceramint.2016.06.045

Google Scholar

[87] S. Wang, W. Li, S. Wang et al., Deposition of SiC/La2Zr2O7 multi-component coating on C/SiC substrate by combining sol-gel process and slurry, Surf. Coat. Tech. 302 (2016) 383-388.

DOI: 10.1016/j.surfcoat.2016.05.079

Google Scholar

[88] L. Wang, Q. Fu, N. Liu, Y. Shan, Supersonic plasma sprayed MoSi2-ZrB2 antioxidation coating for SiC-C/C composites, Surf. Eng. 32(7) (2015) 1-6.

Google Scholar

[89] A. Kaiser, M. Lobert, R. Telle, Thermal stability of zircon (ZrSiO4), J. Eur. Ceram. Soc. 28 (2008) 2199-2211.

DOI: 10.1016/j.jeurceramsoc.2007.12.040

Google Scholar

[90] D. Pizon, L. Charpentier, R. Lucas et al., Oxidation behavior of spark plasma sintered ZrC–SiC composites obtained from the polymer-derived ceramics route, Ceram. Int. 40(3) (2014) 5025-5031.

DOI: 10.1016/j.ceramint.2013.08.105

Google Scholar

[91] H.B. Li, L.T. Zhang, L.F. Cheng, Y.G. Wang, Oxidation analysis of 2D C/ZrC-SiC composites with different coating structures in CH4 combustion gas environment, Ceram. Int. 35 (2009) 2277-2282.

DOI: 10.1016/j.ceramint.2008.12.002

Google Scholar

[92] L.Y. Zhao, D.C. Jia, X.M. Duan et al., Oxidation of ZrC-30 vol% SiC composite in air from low to ultrahigh temperature. J. Eur. Ceram. Soc. 32 (2012) 947-954.

DOI: 10.1016/j.jeurceramsoc.2011.10.024

Google Scholar

[93] Y. Jia, H. Li, X. Yao et al., Effect of LaB6 content on the gas evolution and structure of ZrC coating for carbon/carbon composites during ablation, Ceram. Int. 43 (2017) 3601-3609.

DOI: 10.1016/j.ceramint.2016.11.197

Google Scholar

[94] Y. Zhang, H. Hu, P. Zhang et al., SiC/ZrB2-SiC-ZrC multilayer coating for carbon/carbon composites against ablation, Surf. Coat. Technol. 300 (2016) 1-9.

DOI: 10.1016/j.surfcoat.2016.05.028

Google Scholar

[95] X. Yao, H. Li, Y. Zhang, Y. Wang, Oxidation and mechanical properties of SiC/SiC-MoSi2-ZrB2 coating for carbon/carbon composites, J. Mater. Sci. Technol. 30 (2014) 123-127.

DOI: 10.1016/j.jmst.2013.09.006

Google Scholar

[96] X. Ren, H. Li, Q. Fu et al., TaB2-SiC-Si multiphase oxidation protective coating for SiC-coated carbon/carbon composites, J. Eur. Ceram Soc. 33 (2013) 2953-2959.

DOI: 10.1016/j.jeurceramsoc.2013.06.028

Google Scholar

[97] T. Feng, H. Li, M. Hu et al., Oxidation and ablation resistance of the ZrB2-CrSi2-Si/SiC coating for C/C composites at high temperature, J. Alloys Compd. 662 (2016) 302-307.

DOI: 10.1016/j.jallcom.2015.12.011

Google Scholar

[98] X. Ren, H. Li, Q. Fu et al., Oxidation resistant graded multiphase coating for carbon/carbon composites, Surf. Coat. Technol. 232 (2013) 821-826.

DOI: 10.1016/j.surfcoat.2013.06.105

Google Scholar

[99] Y. Jia, H. Li, Q. Fu, J. Sun, A ZrC-SiC/ZrC-LaB6/ZrC multilayer ablation resistance coating for SiC-coated carbon/carbon composites, Surf. Coat. Technol. 309 (2017) 545-553.

DOI: 10.1016/j.surfcoat.2016.12.010

Google Scholar

[100] F. Tao, L. He-Jun, S. Xiao-Hong et al., Oxidation and ablation resistance of ZrB2-SiC-Si/B-modified SiC coating for carbon/carbon composites, Corros. Sci. 67 (2013) 292-297.

DOI: 10.1016/j.corsci.2012.10.041

Google Scholar

[101] Y. Zhang, Z. Hu, H. Li, J. Ren, Ablation resistance of ZrB2-SiC coating prepared by supersonic atmosphere plasma spraying for SiC-coated carbon/carbon composites. Ceram. Int. 40 (2014) 14749-14755.

DOI: 10.1016/j.ceramint.2014.06.064

Google Scholar

[102] B.L. Zou, Z.S. Khan, X.Z. Fan, A new double layer oxidation resistant coating based on Er2SiO5/LaMgAl11O19 deposited on C/SiC composites by atmospheric plasma spraying, Surf. Coat. Technol. 219 (2013) 101-108.

DOI: 10.1016/j.surfcoat.2013.01.011

Google Scholar

[103] X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc. 24 (2004) 1-10.

Google Scholar

[104] X. Zou, Q. Fu, L. Liu et al., ZrB2-SiC coating to protect carbon/carbon composites against ablation, Surf. Coat. Technol. 226 (2013) 17-21.

DOI: 10.1016/j.surfcoat.2013.03.027

Google Scholar

[105] P. Wang, S. Zhou, P. Hu et al., Ablation resistance of ZrB2-SiC/SiC coating prepared by pack cementation for graphite, J. Alloys Compd. 682 (2016) 203-207.

DOI: 10.1016/j.jallcom.2016.04.010

Google Scholar

[106] K.L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci. 48 (2003) 57-170.

Google Scholar

[107] Q. Huang, Fabrication, Structure and Application of High Performance Carbon/Carbon Composites, Central South University Press, Changsha, (2010).

Google Scholar

[108] L.D de Castro. RF Patent No. 5001947/26. (1991).

Google Scholar

[109] V.A. Rozenenkova, S.S. Solntsev, E.N. Kablov et al., RF Patent No. 2005122153/03. (2005).

Google Scholar

[110] L.S. Am, P.J. Hun, Korea Patent KR20020039564 A. (2002).

Google Scholar

[111] A.N. Astapov, L.N. Rabinskiy, Investigation of destruction mechanisms for heat-resistant coatings in hypersonic flows of air plasma, Solid State Phenom. 269 (2017) 14-30.

DOI: 10.4028/www.scientific.net/ssp.269.14

Google Scholar

[112] J.A. Zaykoski, I.G. Talmy, J.K. Ashkenazi, Patent US 6632762 B1. (2003).

Google Scholar

[113] G.F. Chen, K.N. Lee, S.N. Tewari, Slurry development for the deposition of a GdSiO4+ Mullite environmental barrier coating on silicon carbide, J. Ceram. Process. Res. 8 (2007) 142-144.

Google Scholar

[114] V.V. Vikulin, T.V. Leshchuk, I.N. Kurskaya, RF Patent No. 2004123328/03. (2006).

Google Scholar

[115] L. Silvestroni, G. Meriggi, D. Sciti, Oxidation behavior of ZrB2 composites doped with various transition metal silicides, Corros. Sci. 83 (2014) 281-291.

DOI: 10.1016/j.corsci.2014.02.026

Google Scholar