[1]
S.A. Ashter, Introduction to Bioplastics Engineering, first ed., Elsevier, Oxford, (2006).
Google Scholar
[2]
R. Auras, L.-T. Lim, S.E.M. Selke, H. Tsuji, Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Application, first ed., Wiley, Hoboken, (2011).
DOI: 10.1002/9780470649848
Google Scholar
[3]
K. Fukushima, Y. Kimura, Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application, Polym. Int. 55 (2006) 626-642.
DOI: 10.1002/pi.2010
Google Scholar
[4]
T. Mukose, T. Fujiwara, J. Nakano, I. Taniguchi, M. Miyamoto, Y. Kimura, I. Teraoka, C.W. Lee, Hydrogel formation between enantiomeric B-A-B-type block copolymers of polylactides (PLLA or PDLA: A) and polyoxyethylene (PEG: B); PEG-PLLA-PEG and PEG-PDLA-PEG, Macromol. Biosci. 4 (2004).
DOI: 10.1002/mabi.200300112
Google Scholar
[5]
M.H. Ryu, J. Park, D.X. Oh, S.Y. Hwang, H. Jeon, S.S. Im, J. Jegal, Precisely controlled two-step synthesis of cellulose-graft-poly(l-lactide) copolymers: effects of graft chain length on thermal behavior, Polym. Degrad. Stab. 142 (2017) 226-233.
DOI: 10.1016/j.polymdegradstab.2017.07.008
Google Scholar
[6]
D. Garlotta, A literature review of poly(lactic acid), J. Polym. Environ. 9 (2001) 63-84.
Google Scholar
[7]
K.M. Nampoothiri, N.R. Nair, R.P. John, An overview of the recent developments in polylactide (PLA) research, Bioresour. Technol. 101 (2010) 8493-8501.
DOI: 10.1016/j.biortech.2010.05.092
Google Scholar
[8]
M. Ajioka, K. Enomoto, K. Suzuki, A. Yamaguchi, The basic properties of poly(lactic acid) produced by the direct condensation polymerization of lactic acid, J. Environ. Polym. Degr. 3 (1995) 225-234.
DOI: 10.1007/bf02068677
Google Scholar
[9]
S.H. Kim, Y.H. Kim, Direct condensation polymerization of lactic acid, Macromol. Symp. 144 (1999) 277-287.
DOI: 10.1002/masy.19991440125
Google Scholar
[10]
K.W. Kim, S.I. Woo, Synthesis of high-molecular-weight poly(l-lactic acid) by direct polycondensation, Macromol. Chem. Phys. 203 (2002) 2245-2250.
DOI: 10.1002/1521-3935(200211)203:15<2245::aid-macp2245>3.0.co;2-3
Google Scholar
[11]
K. Fukushima, Y. Kimura, An efficient solid-state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight, J. Polym. Sci., Part A: Polym. Chem. 46 (2008) 3714-3722.
DOI: 10.1002/pola.22712
Google Scholar
[12]
F. Achmad, K. Yamane, S. Quan, T. Kokugan, Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators, Chem. Eng. J. 151 (2009) 342-350.
DOI: 10.1016/j.cej.2009.04.014
Google Scholar
[13]
B. Peng, H. Hou, F. Song, L. Wu, Synthesis of high molecular weight poly(l-lactic acid) via melt/solid state polycondensation. II. effect of precrystallization on solid state polycondensation, Ind. Eng. Chem. Res. 51 (2012) 5190-5196.
DOI: 10.1021/ie202192q
Google Scholar
[14]
S.-A Park, J. Choi, S. Ju, J. Jegal, K.M. Lee, S.Y. Hwang, D.X. Oh, J. Park, Copolycarbonates of bio-based rigid isosorbide and flexible 1,4-cyclohexanedimethanol: Merits over bisphenol-A based polycarbonates, Polymer 116 (2017) 153-159.
DOI: 10.1016/j.polymer.2017.03.077
Google Scholar