Cryogenic Compressive Strength and Thermal Deformation of Reinforced Polyurethane Foam Material for Membrane Type LNG Carrier

Article Preview

Abstract:

LNG carrier is purposed to transport a liquefied LNG cargo which is reduced to 1/600 of volume in temperature condition of -163°C. In the context of structural performance on LNG cargo hold, the mechanical and thermal behaviors of insulation material under cryogenic temperature are considered as one of the critical factors for the hold design. This paper deals with the thermal deformation and the compressive strength of the reinforced polyurethane foam (RPUF) adapted for the insulation material of membrane type LNG carrier via both material tests and numerical simulations realizing the cryogenic condition. The material tests related to the thermal deformation are carried out to investigate the characteristics for thermal transfer on the actual RPUF specimen. The heat transfer simulations based on finite element analysis (FEA) are carried out using forced convection theory. The results of heat transfer analyses are compared to the material test results. Reasonable cryogenic conditions on RPUF are reviewed from both the analyses and the test results. In the regard of static material strength for the RPUF, the compressive material tests are carried out. The cryogenic temperature effect on the compressive strength of RPUF is evaluated by comparing to the room temperature material test results. From the compressive material tests, the effect of temperature on the ultimate compressive strength is investigated with variation of elongation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-39

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. H. Kim, S. M. Lee, J. M. Lee, B. J. Noh, W. S. Kim, Fatigue strength assessment of MARK-III type LNG cargo containment system, Ocean Eng. 37 (2010) 1243-1252.

DOI: 10.1016/j.oceaneng.2010.05.004

Google Scholar

[2] J. A. Issa, L. O. Garza-Rios, R. P. Taylor, S. P. Lele, A. J. Rinehart, W. H. Bray, O. W. Tredennick, G. Canler, K. Chapot, Structural capacities of LNG membrane containment systems, Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, Osaka, Japan, (2009).

Google Scholar

[3] J. H. Lee, T. W. Kim, M. H. Kim, W. S. Kim, B. J. Noh, I. H. Choe, J. M. Lee, Numerical assessment of dynamic strength of membrane type LNG carrier insulation system, J. Soc. Nav. Arch. Korea, 44 (2007) 305-313.

DOI: 10.3744/snak.2007.44.3.305

Google Scholar

[4] C. S. Lee, J. R. Cho, W. S. Kim, B. J. Noh, M. H. Kim, J. M. Lee, Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis, Int. J. Nav. Arch. Ocean. 5 (2011) 1-20.

DOI: 10.2478/ijnaoe-2013-0114

Google Scholar

[5] J. H. Lee, W. C. Choi, M. H. Kim, W. S. Kim, B. J. Noh, I. H. Choe, J. M. Lee, Experimental assessment of dynamic strength of membrane type LNG carrier insulation system, J. Soc. Nav. Arch. Korea 44 (2007) 296-304.

DOI: 10.3744/snak.2007.44.3.296

Google Scholar

[6] W. S. Park, K. Y. Kang, M. S. Chun, J. M. Lee, A comparative study on mechanical behavior of low temperature application materials for ships and offshore structures, J. Soc. Nav. Arch. Korea 48 (2010) 189-199.

DOI: 10.3744/snak.2011.48.3.189

Google Scholar

[7] K. M. Asl, A. Tari, F. Khomamizadeh, Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy, Mat. Sci. Eng. A-Struct. 523 (2009) 27-31.

DOI: 10.1016/j.msea.2009.06.003

Google Scholar

[8] A. Kawashima, Y. Zeng, G. Xie, N. Nishiyama, A. Inoue, Microstructure in a Ni60Pd20P17B3 bulk metallic glass compressively fractured at cryogenic temperature, Mat. Sci. Eng. A-Struct. 528 (2010) 391-396.

DOI: 10.1016/j.msea.2010.09.029

Google Scholar

[9] J. Y. Huang, Y. T. Zhu, X. Z. Liao, I. J. Beyerlein, M. A. Bourke, T. E. Mitchell, Microstructure of cryogenic treated M2 tool steel, Mat. Sci. Eng. A-Struct. 339 (2003) 241-244.

DOI: 10.1016/s0921-5093(02)00165-x

Google Scholar

[10] G. H. Xiao, N. R. Tao, K. Lu, Microstructures and mechanical properties of a Cu–Zn alloy subjected to cryogenic dynamic plastic deformation, Mat. Sci. Eng. A-Struct. 513-514 (2009) 13-21.

DOI: 10.1016/j.msea.2009.01.022

Google Scholar

[11] J. C. Nadeau, M. Ferrari, Effective thermal expansion of heterogeneous materials with application to low temperature environments, Mech. Mater. 36 (2004) 201-214.

DOI: 10.1016/s0167-6636(03)00009-7

Google Scholar

[12] A. Siegmann, S. Kenig, D. Alperstein, M. Narkis, Mechanical behavior of reinforced polyurethane foams, Polym. Comp. 4 (1983) 113-119.

DOI: 10.1002/pc.750040206

Google Scholar

[13] A. C. Yunus, Heat Transfer: A Practical Approach, McGraw-Hill, New York, (2003).

Google Scholar

[14] MSC software, MSC. NASTRAN User's Manual, MSC software, California, (2017).

Google Scholar