Effect of Zeolite as a Green Catalyst and Nucleation Agent on the Physical Properties of Poly(Ethylene 2,5-Furan-Dicarboxylate)

Article Preview

Abstract:

In this study, poly(ethylene 2,5-furan dicarboxylate) (PEF) was synthesized from biomass-based dimethyl furan-2,5-dicarboxylate using different-sized zeolites, with substituted ions such as Li and K, as efficient green catalysts for in situ polymerization. The Z5Ali catalyst yielded the PEF biopolyester with the highest weight-average molecular weight among all the samples: 53,800 g/mol. From their TGA curves, it was confirmed that the PEF sample with ZA5Li as the catalyst showed an increased thermal stability compared to homo-PEF. Generally, homo-PEF exhibited a very low melt-crystallization rate with low enthalpy. However, all the PEF samples using zeolite as the catalyst formed endotherms I and II. This result was attributed to the fact that zeolite affects the melt and recrystallization of imperfect crystals due to physical hindrance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-93

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kimura, K. Nakamura, K. Tsutsumi, Surface free energies of silica fillers and their relation to the adsorption of poly(ethylene terephthalate), J. Coll. Interf. Sci. 279 (2004) 509–514.

DOI: 10.1016/j.jcis.2004.06.093

Google Scholar

[2] S. Y. Hwang, W. D. Lee, J. S. Lim, K. H. Park, S. S. Im, Dispersibility of clay and crystallization kinetics for in situ polymerized PET/pristine and modified montmorillonite nanocomposites, J. Polym. Sci. Part B: Polym. Phys. 46 (2008) 1022–1035.

DOI: 10.1002/polb.21435

Google Scholar

[3] N. Torres, J. J. Robin, B. Boutevin, Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding, Eur. Polym. J. 36 (2000) 2075–(2080).

DOI: 10.1016/s0014-3057(99)00301-8

Google Scholar

[4] G. Güçlü, T. Yalçınyuva, S. Özgümüş, M. Orbay, Hydrolysis of waste polyethylene terephthalate and characterization of products by differential scanning calorimetry, Thermochim. Acta 404 (2003) 193–205.

DOI: 10.1016/s0040-6031(03)00160-6

Google Scholar

[5] A. J. J. E. Eerhart, A. P. C. Faaij, M. K. Patel, Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance, Energy Environ. Sci. 5 (2012) 6407–6422.

DOI: 10.1039/c2ee02480b

Google Scholar

[6] V. Tsanaktsis, E. Vouvoudi, G. Z. Papageorgiou, D. G. Papageorgiou, K. Chrissafis, D. N. Bikiaris, Thermal degradation kinetics and decomposition mechanism of polyesters based on 2,5-furandicarboxylic acid and low molecular weight aliphatic diols, J. Anal. Appl. Pyrolysis 112 (2015).

DOI: 10.1016/j.jaap.2014.12.016

Google Scholar

[7] A. F. Sousa, C. Vilela, A. C. Fonseca, M. Matos, C. S. R. Freire, G. -J. M. Gruter, J. F. J. Coelho, A. J. D. Silvestre, Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency, Polym. Chem. 6 (2015).

DOI: 10.1039/c5py00686d

Google Scholar

[8] T. Kim, J. M. Koo, M. H. Ryu, H. Jeon, S. M. Kim, S. A. Park, D. X. Oh, J. Park, S. Y. Hwang, Sustainable terpolyester of high Tg based on bio heterocyclic monomer of dimethyl furan-2,5-dicarboxylate and isosorbide, Polymer 132 (2017) 122–132.

DOI: 10.1016/j.polymer.2017.10.052

Google Scholar

[9] S. K. Burgess, R. M. Kriegel, W. J. Koros, Carbon dioxide sorption and transport in amorphous poly(ethylene furanoate), Macromolecules 48 (2015) 2184−2193.

DOI: 10.1021/acs.macromol.5b00333

Google Scholar

[10] J. Wang, X. Liu, Y. Zhang, F. Liu, J. Zhu, Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: influence of composition on mechanical and barrier properties, Polymer 103 (2016) 1–8.

DOI: 10.1016/j.polymer.2016.09.030

Google Scholar

[11] J. Zhu, J. Cai, W. Xie, P. H. Chen, M. Gazzano, M. Scandola, R. A. Gross, Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: synthesis, physical properties, and crystal structure, Macromolecules 46 (2013) 796−804.

DOI: 10.1021/ma3023298

Google Scholar

[12] S. K. Burgess, J. E. Leisen, B. E. Kraftschik, C. R. Mubarak, R. M. Kriegel, W. J. Koros, Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate), Macromolecules 47 (2014) 1383−1391.

DOI: 10.1021/ma5000199

Google Scholar

[13] K. S. Walton, M. B. Abney, M. D. LeVan, CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange, Micropor. Mesopor. Mater. 91 (2006) 78–84.

DOI: 10.1016/j.micromeso.2005.11.023

Google Scholar

[14] J. G. van Berkel, N. Guigo, J. J. Kolstad, L. Sipos, B. Wang, M. A. Dam, N. Sbirrazzuoli, Isothermal crystallization kinetics of poly(ethylene 2,5-furandicarboxylate), Macromol. Mater. Eng. 300 (2015) 466–474.

DOI: 10.1002/mame.201400376

Google Scholar

[15] V. Tsanaktsis, D. N. Bikiaris, N. Guigo, S. Exarhopoulos, D. G. Papageorgiou, N. Sbirrazzuoli, G. Z. Papageorgiou, Synthesis, properties and thermal behavior of poly(decylene-2,5-furanoate): a biobased polyester from 2,5-furan dicarboxylic acid, RSC Adv. 5 (2015).

DOI: 10.1039/c5ra13324f

Google Scholar