[1]
N.K. Negied, E.E. Hemayed, M.B. Fayek, Pedestrians' detection in thermal bands – Critical survey, J. Electr. Syst. Inf. Technol. 2 (2015) 141-148.
DOI: 10.1016/j.jesit.2015.06.002
Google Scholar
[2]
F. Niklaus, A. Decharat, C. Jansson, G. Stemme, Performance model for uncooled infrared bolometer arrays and performance predictions of bolometers operating at atmospheric pressure, Infrared Phys. Technol. 51 (2008) 168-177.
DOI: 10.1016/j.infrared.2007.08.001
Google Scholar
[3]
J.M.G. Gomez, A. Relano, J. Retamosa, E. Faleiro, L. Salasnich, M. Vranicar, M. Robnik, 1/fα noise in spectral fluctuations of quantum systems, Phys. Rev. lett. 94 (2005) 084101 (7pp).
Google Scholar
[4]
D.B.S. John, H-B. Shin, M-Y. Lee, S.K. Ajmera, A.J. Syllaios, E.C. Dickey, T.N. Jackson, N.J. Podraza, Influence of microstructure and composition on hydrogenated silicon thin film properties for uncooled microbolometer applications, J. Appl. Phys. 110 (2011).
DOI: 10.1063/1.3610422
Google Scholar
[5]
N. Yamada, T. Hitosugi, H. Kasai, N.L.H. Hoang, S. Nakao, Y. Hirose, T. Shimada, T. Hasegawa, Direct growth of transparent conducting Nb-doped anatase TiO2 polycrystalline films on glass, J. Appl. Phys. 105 (2009) 123702 (6pp).
DOI: 10.1063/1.3148267
Google Scholar
[6]
H.B. Shin, D.S. John, M.Y. Lee, N.J. Podraza, T.N. Jackson, Electrical properties of plasma enhanced chemical vapor deposition a-Si:H and a-Si1-xCx:H for microbolometer applications, J. Appl. Phys. 114 (2013) 183705 (6pp).
DOI: 10.1063/1.4829013
Google Scholar
[7]
C. Chen, X. Yi, J. Zhang, X. Zhao, Linear uncooled microbolometer array based on VOX thin films, Infrared Phys. Technol. 42 (2001) 87-90.
DOI: 10.1016/s1350-4495(01)00058-5
Google Scholar
[8]
Y.A.K. Reddy, Y.B. Shin, I-K. Kang, H.C. Lee, P.S. Reddy, Enhanced bolometric properties of TiO2-x thin films by thermal annealing, Appl. Phys. Lett. 107 (2015) 023503 (4pp).
DOI: 10.1063/1.4926604
Google Scholar
[9]
Y.A.K. Reddy, I-K. Kang, Y.B. Shin, H.C. Lee, Bolometric properties of reactively sputtered TiO2-x films for thermal infrared image sensors, J. Phys. D: Appl. Phys. 48 (2015) 355104 (9pp).
DOI: 10.1088/0022-3727/48/35/355104
Google Scholar
[10]
G. Pacchioni, Oxygen vacancy: The invisible agent on oxide surfaces, ChemPhysChem 4 (2003) 1041-1047.
DOI: 10.1002/cphc.200300835
Google Scholar
[11]
Z. Zhang, O. Bondarchuk, J.M. White, B.D. Kay, Z. Dohnalek, Imaging adsorbate O-H bond cleavage: Methanol on TiO2(110), J. Am. Chem. Soc. 128 (2006) 4198-4199.
DOI: 10.1021/ja058466a
Google Scholar
[12]
H. Kamisaka, T. Hitosugi, T. Suenaga, T. Hasegawa, K. Tamashita, Density functional theory based first-principle calculation of Nb-doped anatase TiO2 and its interactions with oxygen vacancies and interstitial oxygen, J. Chem. Phys. 131 (2009).
DOI: 10.1063/1.3157283
Google Scholar
[13]
A. Fraenkel, U. Mizrahi, L. Bikov, A. Adin, E. Malkinson, A. Giladi, D. Seter, Z. Kopolovich, VOX-based uncooled microbolometric detectors: recent developments at SCD, Proc. SPIE 6206 (2006) 62061C.
DOI: 10.1117/12.664020
Google Scholar
[14]
W-B. Song, J.J. Talghader, Design and characterization of adaptive microbolometers, J. Micromech. Microeng. 16 (2006) 1073-1079.
DOI: 10.1088/0960-1317/16/5/028
Google Scholar
[15]
Y.A.K. Reddy, I-K. Kang, Y.B. Shin, H.C. Lee, Improvement of the thermal stability of Nb:TiO2-x samples for uncooled infrared detectors, J. Phys. D: Appl. Phys. 51 (2018) 025104 (8pp).
DOI: 10.1088/1361-6463/aa9b60
Google Scholar
[16]
C.H. Heo, S-B. Lee, J-H. Boo, Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics, Thin Solid Films 475 (2005) 183-188.
DOI: 10.1016/j.tsf.2004.08.033
Google Scholar
[17]
M.-L. Zhang, D.A. Drabold, Theory of temperature coefficient of resistivity: Application to amorphous Si and Ge, Euro Phys. Lett. 98 (2012) 17005 (5pp).
DOI: 10.1209/0295-5075/98/17005
Google Scholar
[18]
W-B. Song, J.J. Talghader, Adjustable responsivity for thermal infrared detectors, Appl. Phys. Lett. 81 (2002) 550-552.
DOI: 10.1063/1.1493223
Google Scholar