Ultralow Fouling Surfaces from Self-Assembly of Copolymers with Sticky Biomimic Functional Groups

Article Preview

Abstract:

In this work, a new strategy for preparing antifouling surfaces by a simple dip-coating procedure is reported. Copolymers containing catechol and antifouling pendant side groups were synthesized via the free radical polymerization of a catechol-containing methacrylate monomer N-(3,4-dihydroxyphenyl) ethyl methacrylamide and three kinds of antifouling monomers separately using α,α’-azobisisobutyronitrile (AIBN) as initiator. These copolymers can assemble onto variety of materials surfaces including metals, oxides, and polymers such as PTFE using catechol groups via multivalent complex bonding. The catechol groups are helpful for adhesion of the copolymers onto the surfaces, while the other side chains endow the coatings with antifouling activity. Modification on the substrates with copolymers were verified by X-ray photoelectron spectroscopy (XPS), the images of microalgaes and zoospores setting on the substrates were taken by microscope and scanning electron microscope (SEM). The copolymer-coated surfaces, especially the surface modified by copolymer with 3-sulfopropyl methacrylate potassium salt (SPMA(K)), displayed excellent antifouling activity and fouling-release properties in settlement assay with microalgaes and zoospores.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

298-304

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Magin, C. M.; Finlay, J. A.; Clay, G.; Callow, M. E.; Callow, J. A.; Brennan, A. B., Biomacromolecules 2011, 12, 915-922.

DOI: 10.1021/bm101229v

Google Scholar

[2] Alzieu, C., Ecotoxicology 2000, 9, 71-76.

Google Scholar

[3] de Nys, R.; Steinberg, P. D., Curr. Opin. Biotechnol. 2002, 13, 244-248.

Google Scholar

[4] Callow, M. E.; Callow, J. A.; Pickett-Heaps, J. D.; Wetherbee, R., J. Phycology 1997, 33, 938-947.

DOI: 10.1111/j.0022-3646.1997.00938.x

Google Scholar

[5] Marechal, J. P.; Hellio, C.; Sebire, M.; Clare, A. S., Biofouling 2004, 20, 211-217.

DOI: 10.1080/08927010400011674

Google Scholar

[6] Zhang, Z.; Chao, T.; Chen, S.; Jiang, S., Langmuir 2006, 22, 10072-10077.

Google Scholar

[7] Jiang, S.; Cao, Z., Adv. Mater. 2010, 22, 920-932.

Google Scholar

[8] Huang, J.; Koepsel, R. R.; Murata, H.; Wu, W.; Lee, S. B.; Kowalewski, T.; Russell, A. J.; Matyjaszewski, K., Langmuir 2008, 24, 6785-6795.

DOI: 10.1021/la8003933

Google Scholar

[9] Lee, S. B.; Koepsel, R. R.; Morley, S. W.; Matyjaszewski, K.; Sun, Y. J.; Russell, A.J., iomacromolecules 2004, 5, 877-882.

Google Scholar

[10] Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Science 2007, 318, 426-430.

Google Scholar

[11] Ye, Q.; Zhou, F.; Liu, W., Chemical Society Reviews 2011, 40, 4244-4258.

Google Scholar

[12] Xi, P.; Cheng, K.; Sun, X.; Zeng, Z.; Sun, S., Chemical Communications 2012, 48, 2952-2954.

Google Scholar

[13] Han, H.; Wu, J.; Avery, C. W.; Mizutani, M.; Jiang, X.; Kamigaito, M.; Chen, Z.; Xi, C.; Kurod., Langmuir 2011, 27, 4010-4019.

DOI: 10.1021/la1046904

Google Scholar

[14] Lee, H.; Lee, K. D.; Pyo, K. B.; Park, S. Y.; Lee, H., Langmuir 2010, 26, 3790-3793.

Google Scholar

[15] Li, G.; Xue, H.; Gao, C.; Zhang, F.; Jiang, S., Macromolecules 2010, 43, 14-16.

Google Scholar

[16] Zar, J. H., <Biostatistical Analysis(4th Edition)>. Prentice-Hall,Inc.: 1999; pp.177-206.

Google Scholar

[17] Fan, X. W.; Lin, L. J.; Dalsin, J. L.; Messersmith, P. B., J. Am. Chem. Soc. 2005, 127, 5843-15847.

Google Scholar

[18] Wan, F.; Pei, X.; Yu, B.; Ye, Q.; Zhou, F.; Xue, Q., ACS Appl. Mater. Interfaces 2012, 4, 557-4565.

Google Scholar

[19] Callow, J. A.; Osborne, M. P.; Callow, M. E.; Baker, F.; Donald, A. M., Colloids Surf., B 2003, 7, 315-321.

Google Scholar