Coating of Polyaniline Molecules on Cotton Fabric via Successive Ionic Layer Adsorption and Reaction (SILAR) Technique

Article Preview

Abstract:

Cotton fabric was coated with polyaniline molecules using Successive Ionic Layer Adsorption and Reaction (SILAR) technique. This method provides layer by layer deposition of polyaniline molecules. Infrared spectrum showed the vibrational peaks attributed with the presence of polyaniline molecules on the samples. Four-point probe measurements were done to obtain the surface conductivity of the samples. Upon increasing the dipping cycles, the conductivity of cotton fabric significantly increases. The optimum number of dipping cycle is found to be at 130. Beyond the optimum dipping cycle, the conductivity starts to decrease.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

317-322

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Stoppa and A. Chiolerio, Wearable electronics and smart textiles: A critical review, Sensors, 2014, vol. 14, 11957-11992.

DOI: 10.3390/s140711957

Google Scholar

[2] A. Mazzoldi, D. De Rossi, F. Lorussi, E.P. Scilingo and R. Paradiso, Smart Textiles for Wearable Motion Capture Systems, AUTEX Research Journal, 2002, vol. 2.

Google Scholar

[3] P. Shyamkumar, P. Rai, S. Oh , M. Ramasamy, R.E. Harbaugh and V. Varadan, Wearable Wireless Cardiovascular Monitoring Using Textile-Based Nanosensor and Nanomaterial Systems, Electronics, 2014, vol. 3, 504-520.

DOI: 10.3390/electronics3030504

Google Scholar

[4] K. Shaker, Y. Nawab, M.U. Javaid, M. Umair and M. Maqsood, Development Of 3D Woven Fabric Based Pressure Switch, AUTEX Research Journal, 2015, vol.15.

DOI: 10.1515/aut-2015-0015

Google Scholar

[5] T. Seesaard, P. Lorwongtragool and T. Kerdcharoen, Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses, Sensors (Basel), 2015, 1885-(1902).

DOI: 10.3390/s150101885

Google Scholar

[6] J.D. Stenger-Smith, Intrinsically Electrically Conducting Polymers. Synthesis, Characterization, and Their Applications, Prog. Polym. Sci., 1998, vol. 23, 57-79.

DOI: 10.1016/s0079-6700(97)00024-5

Google Scholar

[7] P.P. Deshpande and D. Sazou, Corrosion Protection of Metals by Intrinsically Conducting Polymers, CRC Press, (2015).

DOI: 10.1201/b19045

Google Scholar

[8] Zh. A. Boeva and V.G. Sergeyev, Polyaniline: Synthesis, Properties, and Application, Polymer Science, 2014, vol. 56, 144-153.

Google Scholar

[9] E.T. Kang, K.G. Neoh and K.L. Tan, Polyaniline: A Polymer With Many Interesting Intrinsic Redox States, Prog. Polym. Sci., 1998, vol. 23, 277-324.

DOI: 10.1016/s0079-6700(97)00030-0

Google Scholar

[10] J.K. Pamatmat, A.V. Gillado, M.U. Herrera (2017).

Google Scholar

[11] R. Neelakandan and M. Madhusoothanan, Electrical resistivity studies on polyaniline coated polyester fabrics, Journal of Engineered Fabrics & Fibers, 2010, vol. 5, 25-29.

DOI: 10.1177/155892501000500304

Google Scholar

[12] B. Kim, V. Koncar and C. Dufour, Polyaniline‐coated PET conductive yarns: Study of electrical, mechanical, and electro‐mechanical properties, Journal of Applied Polymer Science, 2006, vol. 101, 1252-1256.

DOI: 10.1002/app.22799

Google Scholar

[13] J. Stejskal, O. Quadrat, I. Sapurina, J. Zemek, A. Drelinkiewicz, M. Hasik, I. Křivka and J. Prokeš, Polyaniline-coated silica gel, European Polymer Journal, 2002, vol 38, 631-637.

DOI: 10.1016/s0014-3057(01)00241-5

Google Scholar

[14] N.A. Abdul-_Manaf, O.K. Echendu, F. Fauzi, L. Bowen and I.M. Dharmadasa, Development of Polyaniline Using Electrochemical Technique For Plugging Pinholes In Cadmium Sulfide/Cadmium Telluride Solar Cells, Journal of Electronic Materials, 2014, vol. 43, 4003-4010.

DOI: 10.1007/s11664-014-3361-5

Google Scholar

[15] N.Y. Abu-Thabit, Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles, Journal of Chemical Education, 2016, 93 (9), 1606-1611.

DOI: 10.1021/acs.jchemed.6b00060

Google Scholar

[16] I. Sapurina and J. Stejskal. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures, Polymer International, 2008, vol. 57, 1295-1325.

DOI: 10.1002/pi.2476

Google Scholar

[17] B.R. Sankapal, R.S. Mane and C.D. Lokhande, Successive ionic layer adsorption and reaction (SILAR) method for the deposition of large area (~10 cm2) tin disulfide (SnS2) thin films, Materials Research Bulletin, 2000, vol. 35, 2027-(2035).

DOI: 10.1016/s0025-5408(00)00405-0

Google Scholar

[18] U.M. Chougale, J.V. Thombare and V.J. Fulari, Synthesis of Polyaniline nanofibres by SILAR method for Supercapacitor application, IEEE, 2013, 1078-1083.

DOI: 10.1109/iceets.2013.6533537

Google Scholar