[1]
K. Chen, D. Xue, Ionic Supercapacitor Electrode Materials: A System-Level Design of Electrode and Electrolyte for Transforming Ions into Colloids, Colloids Interface Sci. Comm. 1 (2014)39-4 2.
DOI: 10.1016/j.colcom.2014.06.006
Google Scholar
[2]
J. Jiang, W. Shi, S. Song, Q. Hao, W. Fan, X. Xia, X. Zhang, Q. Wang, C. Liu, D. Yan, Solvothermal synthesis and electrochemical performance in super-capacitors of Co3O4/C flower-like nanostructures, J. Power Sources. 248 (2014) 1281-1289.
DOI: 10.1016/j.jpowsour.2013.10.046
Google Scholar
[3]
B. Vidyadharan, R.A. Aziz, I.I. Misnon, G.M.A. Kumar,J. Ismail, M.M. Yusoff, R. Jose, High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode, J. Power Sources.270 (2014) 526-535.
DOI: 10.1016/j.jpowsour.2014.07.134
Google Scholar
[4]
V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande, Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis, Appl. Surf. Sci. 252 (2006) 7487-7492.
DOI: 10.1016/j.apsusc.2005.09.004
Google Scholar
[5]
N. Spataru, C. Terashima, K. Tokuhiro, I. Sutanto, D.A. Tryk, S.-U. Park, A. Fujishima, Electrochemical behavior of cobalt oxide films deposited at conductive diamond electrodes, J. Electrochem. Soc. 150 (2003) E337-E341.
DOI: 10.1149/1.1579037
Google Scholar
[6]
M.D.L. Balela, S. Yagi, E. Matsubara, Electroless deposition of cobalt nanowires in an aqueous solution under external magnetic field, Electrochem. Solid-State Lett. 14 (2011) D68-D71.
DOI: 10.1149/1.3568829
Google Scholar
[7]
H. Wang, L. Zhang, X. Tan, C.M.B. Holt, B. Zahiri, B.C. Olsen, D. Mitlin, Supercapacitive Properties of Hydrothermally Synthesized Co3O4Nanostructures, J. Phys. Chem. C. 115 (2011) 17599-17605.
DOI: 10.1021/jp2049684
Google Scholar
[8]
M.D.L. Balela, S. Yagi, E. Matsubara, Fabrication of cobalt nanowires by electroless deposition under external magnetic field, J. Electrochem. Soc. 158 (2011) D210-216.
DOI: 10.1149/1.3545065
Google Scholar
[9]
C.-M. Wu, C.-Y. Fan, I.-W. Sun, W.-T. Tsai, J.-K. Chang, Improved pseudocapacitive performance and cycle life of cobalt hydroxide on an electrochemically derived nano-porous Ni framework, J. Power Sources. 196 (2011) 7828-7834.
DOI: 10.1016/j.jpowsour.2011.03.083
Google Scholar
[10]
M. D. L. Balela, S. Yagi and E. Matsubara, Growth of Cobalt Nanowires under External Magnetic Field, Advanced Material Research, 911, 136-140 (2014).
DOI: 10.4028/www.scientific.net/amr.911.136
Google Scholar
[11]
C. Chen, H.J. Fan, Branced nanowires: synthesis and energy applications, Nano Today. 7 (2012) 327-343.
Google Scholar
[12]
L.A. Dahonog, J.D. Ocon, M.D.L. Balela, Pseudocapacitive behavior of Ni(OH)2/NiO hierarchical structures grown on carbon fiber paper, Solid State Phenomena. 266 (2017) 177-181.
DOI: 10.4028/www.scientific.net/ssp.266.177
Google Scholar
[13]
E.M.A. Espejo, M.D.L. Balela, Electrochemical investigation of cupric oxide grown on copper foil via chemical bath deposition, Solid State Phenomena. 266 (2017) 105-109.
DOI: 10.4028/www.scientific.net/ssp.266.105
Google Scholar
[14]
E.M.A. Espejo M.D.L. Balela. Facile synthesis of cupric hydroxide and cupric oxide on copper foil for potential electrochemical applications. IOP Conference Series: Materials Science and Engineering, 201 (2017) 012050.
DOI: 10.1088/1757-899x/201/1/012050
Google Scholar
[15]
L.A. Dahonog, J.D. Ocon, M.D.L. Balela. Formation of Ni(OH)2 hybrid structures on carbon cloth, IOP Conference Series: Materials Science and Engineering, 201 (2017) 012030.
DOI: 10.1088/1757-899x/201/1/012030
Google Scholar