Two-Step Synthesis of Cobalt Oxide Nanowires via Electroless Deposition and Thermal Oxidation for Supercapacitor Applications

Article Preview

Abstract:

Cobalt (Co) nanowires were synthesized via electroless deposition in ethylene glycol under an external magnetic field then oxidized in air via thermal oxidation at 250 to 300 °C. The nanowires have lengths in the range of 10 to 14 µm while the diameter increases with oxidation temperature. This can be attributed to the partial melting of the nanowires during oxidation, resulting to sintering. The peaks in the XRD patterns show complete oxidation of Co nanowires, producing a mixture of Co3O4 and CoO. It was observed that Co3O4 and CoO peaks were more intense at 270 °C. There is a decrease in specific capacitance (F/g) with increase in scan rate due to poor electron exchange between active material electrode and electrolyte. Highest calculated specific capacitance was 339.28 F/g using nanowires oxidized at 270 °C at 1 mV/s scan rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

336-341

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Chen, D. Xue, Ionic Supercapacitor Electrode Materials: A System-Level Design of Electrode and Electrolyte for Transforming Ions into Colloids, Colloids Interface Sci. Comm. 1 (2014)39-4 2.

DOI: 10.1016/j.colcom.2014.06.006

Google Scholar

[2] J. Jiang, W. Shi, S. Song, Q. Hao, W. Fan, X. Xia, X. Zhang, Q. Wang, C. Liu, D. Yan, Solvothermal synthesis and electrochemical performance in super-capacitors of Co3O4/C flower-like nanostructures, J. Power Sources. 248 (2014) 1281-1289.

DOI: 10.1016/j.jpowsour.2013.10.046

Google Scholar

[3] B. Vidyadharan, R.A. Aziz, I.I. Misnon, G.M.A. Kumar,J. Ismail, M.M. Yusoff, R. Jose, High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode, J. Power Sources.270 (2014) 526-535.

DOI: 10.1016/j.jpowsour.2014.07.134

Google Scholar

[4] V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande, Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis, Appl. Surf. Sci. 252 (2006) 7487-7492.

DOI: 10.1016/j.apsusc.2005.09.004

Google Scholar

[5] N. Spataru, C. Terashima, K. Tokuhiro, I. Sutanto, D.A. Tryk, S.-U. Park, A. Fujishima, Electrochemical behavior of cobalt oxide films deposited at conductive diamond electrodes, J. Electrochem. Soc. 150 (2003) E337-E341.

DOI: 10.1149/1.1579037

Google Scholar

[6] M.D.L. Balela, S. Yagi, E. Matsubara, Electroless deposition of cobalt nanowires in an aqueous solution under external magnetic field, Electrochem. Solid-State Lett. 14 (2011) D68-D71.

DOI: 10.1149/1.3568829

Google Scholar

[7] H. Wang, L. Zhang, X. Tan, C.M.B. Holt, B. Zahiri, B.C. Olsen, D. Mitlin, Supercapacitive Properties of Hydrothermally Synthesized Co3O4Nanostructures, J. Phys. Chem. C. 115 (2011) 17599-17605.

DOI: 10.1021/jp2049684

Google Scholar

[8] M.D.L. Balela, S. Yagi, E. Matsubara, Fabrication of cobalt nanowires by electroless deposition under external magnetic field, J. Electrochem. Soc. 158 (2011) D210-216.

DOI: 10.1149/1.3545065

Google Scholar

[9] C.-M. Wu, C.-Y. Fan, I.-W. Sun, W.-T. Tsai, J.-K. Chang, Improved pseudocapacitive performance and cycle life of cobalt hydroxide on an electrochemically derived nano-porous Ni framework, J. Power Sources. 196 (2011) 7828-7834.

DOI: 10.1016/j.jpowsour.2011.03.083

Google Scholar

[10] M. D. L. Balela, S. Yagi and E. Matsubara, Growth of Cobalt Nanowires under External Magnetic Field, Advanced Material Research, 911, 136-140 (2014).

DOI: 10.4028/www.scientific.net/amr.911.136

Google Scholar

[11] C. Chen, H.J. Fan, Branced nanowires: synthesis and energy applications, Nano Today. 7 (2012) 327-343.

Google Scholar

[12] L.A. Dahonog, J.D. Ocon, M.D.L. Balela, Pseudocapacitive behavior of Ni(OH)2/NiO hierarchical structures grown on carbon fiber paper, Solid State Phenomena. 266 (2017) 177-181.

DOI: 10.4028/www.scientific.net/ssp.266.177

Google Scholar

[13] E.M.A. Espejo, M.D.L. Balela, Electrochemical investigation of cupric oxide grown on copper foil via chemical bath deposition, Solid State Phenomena. 266 (2017) 105-109.

DOI: 10.4028/www.scientific.net/ssp.266.105

Google Scholar

[14] E.M.A. Espejo M.D.L. Balela. Facile synthesis of cupric hydroxide and cupric oxide on copper foil for potential electrochemical applications. IOP Conference Series: Materials Science and Engineering, 201 (2017) 012050.

DOI: 10.1088/1757-899x/201/1/012050

Google Scholar

[15] L.A. Dahonog, J.D. Ocon, M.D.L. Balela. Formation of Ni(OH)2 hybrid structures on carbon cloth, IOP Conference Series: Materials Science and Engineering, 201 (2017) 012030.

DOI: 10.1088/1757-899x/201/1/012030

Google Scholar