[1]
Visuttipitukul P. Chansaksoong S. and Wangyao P., Coating of Nickel Aluminide by Pack Cementation to Improve Oxidation Resistance of Nickel-base Superalloy, Grade IN738, High Temperature Materials and Process 28-6 (2009) pp.401-406.
DOI: 10.1515/htmp.2009.28.6.401
Google Scholar
[2]
Visuttipitukul P., Limvanutpong N. and Wangyao P., Aluminizing of Nickel-based Superalloys Grade IN738 by Powder Liquid Coating, Materials Transactions 51-5 (2010) pp.982-987.
DOI: 10.2320/matertrans.m2009382
Google Scholar
[3]
Visuttipitukul P., Limvanutpong N. and Wangyao P., Aluminizing of High Purity Nickel by Powder Liquid Coating, Chiang Mai Journal of Science 36-3 (2009) pp.331-339.
DOI: 10.2320/matertrans.m2009382
Google Scholar
[4]
M.J. Donachie and S.J. Donachie, Superalloys: A Technical Guide (2nd ed.), ASM International (2002) p.311–312.
Google Scholar
[5]
X.Montero, M.C. Galetz, M.Schutze, Low-activity aluminide coating for superalloys using a slurry process free of halide activators and chromates, Surface and Coatings Technology 222 (2013) pp.9-14.
DOI: 10.1016/j.surfcoat.2013.01.033
Google Scholar
[6]
X.Montero, M.C. Galetz, M.Schutze, Slurry coated Ni-plates Fe-base alloys: Investigation of the influence of powder and substrate composition on intermetallic and structural degradation of aluminides, Surface and Coatings Technology 236 (2013).
DOI: 10.1016/j.surfcoat.2013.10.038
Google Scholar
[7]
Francesco Bozza, Giovanni Bolelli, Carlo Giolli, Andrea Giorgetti, Luca Lusvarghi, Paolo Sassatelli, Andrea Scrivani, Alessia Candeli, Martin Thoma, Diffusion mechanisms and microstructure development in pack aluminizing of Ni-based alloys, Surface and Coatings Technology 239 (2014).
DOI: 10.1016/j.surfcoat.2013.11.034
Google Scholar
[8]
B.A. Pint, J.R. Martin and L.W. Hobbs, 18O/SIMS Characterization of the Growth Mechanism of Doped and Undoped α-Al2O3, Oxidation of Metals 39-3/4 (1993) p.167–195.
DOI: 10.1007/bf00665610
Google Scholar
[9]
T.F. An, H.R. Guan, X.F. Sun and Z.Q. Hu, Effect of the θ – α-Al2O3 Transformation in Scales on the Oxidation Behavior of a Nickel-base Superalloy with an Aluminide Diffusion Coating, Oxidation of Metals 54-3/4 (2000), p.301–316.
Google Scholar
[10]
Y. Huang and X. Peng, The Promoted Formation of an α-Al2O3 Scale on a Nickel Aluminide with Surface Cr2O3 Particles, Corrosion Science 112 (2016) pp.226-232.
DOI: 10.1016/j.corsci.2016.07.029
Google Scholar
[11]
Y. Zheng, Y. Cai, L. Mo and Z. Yang, Formation of Si-containing Barrier in Al-Si Coatings and Its Effect on Protective Capability of Superalloy, Journal of Materials Engineering 13-1 (1991) p.39–46.
DOI: 10.1007/bf02834122
Google Scholar
[12]
K. Shirvani, M. Saremi, A. Nishikata and T. Tsuru, The role of Silicon on Microstructure and High Temperature Performance of Aluminide Coating on Superalloy In-738LC, Materials Transactions 43-10 (2002) p.2622–2628.
DOI: 10.2320/matertrans.43.2622
Google Scholar
[13]
C. Fu, W.K. Kong and G.H. Cao, Microstructure and Oxidation Behavior of Al + Si Co-Deposited Coatings On Nickel-Based Superalloys, Surface and Coatings Technology 258-15 (2014) p.347–352.
DOI: 10.1016/j.surfcoat.2014.09.003
Google Scholar
[14]
J. Zang, P. Song, J. Feng, X. Xiong, R. Chen, G. Liu and J. Lu, Oxidation Behaviour of the Nickel-based Superalloy DZ125 Hot-dipped with Al Coatings Doped by Si, Corrosion Science 112 (2016) p.170–179.
DOI: 10.1016/j.corsci.2016.07.020
Google Scholar
[15]
X. Tu, H. Peng, L. Zheng, W. Qi, J. He, H. Guo and S. Gong, Oxidation and Microstructure Evolution of Al-Si Coated Ni3Al-Based Single Crystal Superalloy with High Mo Content, Applied Surface Sciene 325 (2015), pp.20-26.
DOI: 10.1016/j.apsusc.2014.11.076
Google Scholar
[16]
R.Yang,Y. Wu, Q. Wu, S. Li, Y. Ma and S. Gong, Microstructure and Oxidation Behavior of Modified Aluminide Coating on Ni3Al-Based Single Crystal Superalloy, Chinese Journal of Aeronautics 25-5 (2012) pp.825-830.
DOI: 10.1016/s1000-9361(11)60451-2
Google Scholar
[17]
P.A. Choquet, M.A. Harper and R.A. Rapp, Chromizing-Aluminizing and Chromizing-Siliconizing Coating of a Ferritic Steel, J. Phys. Colloques 50 (1989) pp.C5-681–C5-691.
DOI: 10.1051/jphyscol:1989580
Google Scholar
[18]
R. Bianco and R.A. Rapp, Pack Cementation Aluminide Coatings on Superalloys: Codeposition of Cr and Reactive Elements, J. Electrochem. Soc., 140-4 (1993) p.1181–1190.
DOI: 10.1149/1.2056219
Google Scholar
[19]
M.T. Kim, N.H. Heo, J.H. Shin and C.Y. Kim, Simultaneous Chromizing and Aluminizing using Chromium Oxide and Aluminum: (I) on low alloy steel, Surface and Coatings Technology 123 (2000) p.227–230.
DOI: 10.1016/s0257-8972(99)00518-6
Google Scholar
[20]
N.H. Heo, M.T. Kim, J.H. Shin and C.Y. Kim, Simultaneous Chromizing and Aluminizing using Chromium Oxide and Aluminum: (II) on austenitic stainless steel, Surface and Coatings Technology 124 (2000) p.39–43.
DOI: 10.1016/s0257-8972(99)00519-8
Google Scholar
[21]
A. Dean John, Lange's Handbook of Chemistry (12th ed.),McGraw Hill (1979) pp.9-94.1.
Google Scholar