Empirical Model of Operating Temperature and Pressure Effect towards Pure and Binary O2/ N2 Gas Permeability in Polysulfone Membrane

Article Preview

Abstract:

Oxygen (O2) enriched air combustion via adaption of polymeric membranes has been proposed to be a feasible alternative to increase combustion proficiency while minimizing the emission of greenhouse gases into the atmosphere. Nonetheless, majority of techno-economic assessment on the O2 enriched combustion evolving membrane separation process are confined to assumption of constant membrane permeance. In reality, it is well known that membrane permeance is highly dependent upon the temperature and pressure to which it is operated. Therefore, in this work, an empirical model, which includes the effect of temperature and pressure to permeance, has been evaluated based on own experimental work using polysulfone membrane. The empirical model has been further validated with published experimental results. It is found that the model is able to provide an excellent characterization of the membrane permeance across a wide range of operating conditions for both pure and binary gas with determination coefficient of minimally 0.99.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-244

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.S.M. Lock, K.K. Lau, F. Ahmad, A.M. Shariff, Modeling, simulation and economic analysis of CO2 capture from natural gas using cocurrent, countercurrent and radial crossflow hollow fiber membrane, Int. J. Greenh. Gas Control 36 (2015) 114-134.

DOI: 10.1016/j.ijggc.2015.02.014

Google Scholar

[2] T. Burdyny, H. Struchtrup, Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process, Energ. 35(5) (2010) 1884-1897.

DOI: 10.1016/j.energy.2009.12.033

Google Scholar

[3] H. Lin, M. Zhou, J. Ly, J. Vu, J.G. Wijmans, T.C. Merkel, J. Jin, A. Haldeman, E.H. Wagener, D. Rue, Membrane-Based Oxygen-Enriched Combustion, Ind. Eng. Chem. Res. 52(31) (2013) 10820-10834.

DOI: 10.1021/ie401464z

Google Scholar

[4] B. Belaissaoui, Y. Le Moullec, H. Hagi, E. Favre, Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes, Sep. Purif. Techol. 125 (2014) 142-150.

DOI: 10.1016/j.seppur.2014.01.043

Google Scholar

[5] M.A. Habib, M.A. Nemitallah, D. Afaneh, K. Mezghani, Characteristic of air separation in hollow-fiber polymeric membrane for oxygen enriched air clean combustion applications, J. Clean. Prod. 143 (2017) 960-972.

DOI: 10.1016/j.jclepro.2016.12.025

Google Scholar

[6] S.S.M. Lock, K.K. Lau, A.M. Shariff, Y.F. Yeong, Preliminary techno-economic and environmental assessment of thickness dependent physical aging in oxygen enriched combustion using polymeric membranes, J. Clean. Prod. 162 (2017) 914-937.

DOI: 10.1016/j.jclepro.2017.06.089

Google Scholar

[7] S.S.M. Lock, K.K. Lau, M. Irene Lock Sow, A.M. Shariff, Y.F. Yeong, A.M. Bustam, Molecular simulation and mathematical modelling of glass transition temperature depression induced by CO 2 plasticization in Polysulfone membranes, IOP Conference Series: Materials Science and Engineering 226(1) (2017).

DOI: 10.1088/1757-899x/226/1/012172

Google Scholar

[8] M. Safari, A. Ghanizadeh, M.M. Montazer-Rahmati, Optimization of membrane-based CO2-removal from natural gas using simple models considering both pressure and temperature effects, Int. J. Greenh. Gas Con. 3(1) (2009) 3-10.

DOI: 10.1016/j.ijggc.2008.05.001

Google Scholar

[9] F. Ahmad, K.K. Lau, A.M. Shariff, Y.F. Yeong, Temperature and pressure dependence of membrane permeance and its effect on process economics of hollow fiber gas separation system, J. Membr. Sci. 430 (2013) 44-55.

DOI: 10.1016/j.memsci.2012.11.070

Google Scholar

[10] S.N. Wijenayake, N.P. Panapitiya, S.H. Versteeg, C.N. Nguyen, S. Goel, K.J. Balkus, I.H. Musselman, J.P. Ferraris, Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation, Ind. Eng. Chem. Res. 52(21) (2013).

DOI: 10.1021/ie400149e

Google Scholar

[11] N. Jusoh, Y.F. Yeong, K.K. Lau, A. M. Shariff, Enhanced gas separation performance using mixed matrix membranes containing zeolite T and 6FDA-durene polyimide, J. Membr. Sci. 525 (2017) 175-186.

DOI: 10.1016/j.memsci.2016.10.044

Google Scholar

[12] N. Jusoh, Y.F. Yeong, K.K. Lau, S. A. M., Enhanced gas separation performance using mixed matrix membranes containing zeolite T and 6FDA-durene polyimide, J. Membr. Sci. 525 (2017) 175-186.

DOI: 10.1016/j.memsci.2016.10.044

Google Scholar

[13] X. Duthie, S. Kentish, C. Powell, K. Nagai, G. Qiao, G. Stevens, Operating temperature effects on the plasticization of polyimide gas separation membranes, J. Membr. Sci. 294(1–2) (2007) 40-49.

DOI: 10.1016/j.memsci.2007.02.004

Google Scholar

[14] S.S.M. Lock, K.K. Lau, A.M. Shariff, Y.F. Yeong, M.A. Bustam, Thickness dependent penetrant gas transport properties and separation performance within ultrathin polysulfone membrane: Insights from atomistic molecular simulation, J. Polym. Sci. Pt. B Polym. Phys. 56(2) (2018).

DOI: 10.1002/polb.24523

Google Scholar

[15] Y. Huang, D.R. Paul, Effect of Temperature on Physical Aging of Thin Glassy Polymer Films, Macromol. 38 (2005) 10148-10154.

DOI: 10.1021/ma051284g

Google Scholar

[16] Y. Huang, Physical Aging of Thin Glassy Polymer Films, Austin, (2005).

Google Scholar