[1]
Information on http://timeforchange.org/CO2-cause-of-global-warming.
Google Scholar
[2]
Z. F. Lin and J. W. Wei, CO2 Adsorption on Activated Carbon/SBA-15 with TETA/TEPA Modification, Key Engineering Materials. 735 (2017) 164-167.
DOI: 10.4028/www.scientific.net/kem.735.164
Google Scholar
[3]
L. Zhang, Z.L. Zhan, C.L. Li, T.D. Zhang, R. Gao, J.Y. Yang, X.H. Yu, Microscopic Structure and Adsorption Properties of the Terpenoids-Based Adsorption Material, Key Engineering Materials. 723 (2017) 667-672.
DOI: 10.4028/www.scientific.net/kem.723.667
Google Scholar
[4]
M. Rahmati, H. Modarress, Grand Canonical Monte Carlo Simulation of Isotherm for Hydrogen Adsorption on Nanoporous Siliceous Zeolites at Room Temperature, Applied Surface Science. 255 (2009) 4773-4778.
DOI: 10.1016/j.apsusc.2008.11.072
Google Scholar
[5]
S.M. Wang, Y.X. Yu, G.H. Gao, Grand Canonical Monte Carlo and Non-equilibrium Molecular Dynamics Simulation Study on the Selective Adsorption and Fluxes of Oxygen/ Nitrogen Gas Mixtures Through Carbon Membranes, J. Membr. Sci. 271(2006)140-150.
DOI: 10.1016/j.memsci.2005.07.033
Google Scholar
[6]
T. Hou, L. Zhu, X. Xu, the Adsorption of A Series of Aromatics in ITQ-1: Grand Canonical Monte Carlo Simulations, J. Mol. Catal. A: Chem. 171 (2001) 103-114.
DOI: 10.1016/s1381-1169(01)00060-7
Google Scholar
[7]
L. Lu, Q. Wang, Y. Liu, Adsorption and Separation of Ternary and Quaternary Mixtures of Short Linear Alkanes in Zeolites by Molecular Simulation, Langmuir. 19 (2003) 10617–10623.
DOI: 10.1021/la034766z
Google Scholar
[8]
B. Smit, J. IIja Siepmann, Computer Simulations of the Energetics and Siting of n-alkanes in Zeolites, J. Phys. Chem. 98 (1994) 8442–8452.
DOI: 10.1021/j100085a027
Google Scholar
[9]
Y. Zeng, S. Ju, W. Xing, C. Chen, Computer Simulation of Benzene Adsorbed in All-silica Y and NaY Zeolites, Ind. Eng. Chem. Res. 46 (2007) 242–248.
DOI: 10.1021/ie060118+
Google Scholar
[10]
B. Smit, T.L.M. Maesen, Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity, J. Chem. Rev. 108 (2008) 4125-4184.
DOI: 10.1021/cr8002642
Google Scholar
[11]
V. Lachet, A. Boutin, B. Tavitianb and A.H. Fuchsa, Grand Canonical Monte Carlo Simulations of Adsorption of Mixtures of Xylene Molecules in Faujasite Zeolites, Faraday Discuss. 106 (1997) 307-323.
DOI: 10.1039/a701490b
Google Scholar
[12]
J.N.C. Lopes, D.J. Tildesley, Multiphase Equilibria Using the Gibbs Ensemble Monte Carlo Method, J. Mol. Phys. 92 (1997) 187-196.
DOI: 10.1080/00268979709482088
Google Scholar
[13]
S. H. Lee, J. C. Rasaiah, Molecular Dynamics Simulation of Ionic Mobility. I. Alkali Metal Cations in Water at 25 °C, J. Chem. Phys. 101 (1994) 6964-6974.
DOI: 10.1063/1.468323
Google Scholar
[14]
A.Z. Panagiotopoulos, Supercritical Fluid Science and Technology, in: K.P. Johnston, J. Penninger (Eds.), ACS. Symposium Ser. 406, American Chemical Society, Washington, DC, 1989, p.39–51.
Google Scholar
[15]
E. Beerdsen, B. Smit, S. Calero, The Influence of Non-framework Sodium Cations on the Adsorption of Alkanes in MFI and MOR-Type Zeolites, J. Phys. Chem. B. 106 (2002) 10659-10667.
DOI: 10.1021/jp026257w
Google Scholar
[16]
S. Krista, B. Morgan, M. Douglas, CO2 Adsorption in Y and X Zeolites Modified by Alkali Metal Cation Exchange. J. Microporous and Mesoporous Materials. 91 (2006) 78–84.
DOI: 10.1016/j.micromeso.2005.11.023
Google Scholar
[17]
T. Sarai, N. Klinpol, CO2 Adsorption Performance of Zeolite A from Bagasse Ash as a Silica Source by Ion Exchange Method with LiOH, Thesis, King Mongkut's University of Technology North Bangkok (2016).
Google Scholar
[18]
P. Tantuan, Adsorption of Carbon dioxide and Nitrogen in the Mixture of Synthetic Gas on Standard Zeolite 4A, Thesis, Silpakorn University (2013).
Google Scholar