[1]
Y.B. Tan, X.M. Wang, M.Ma, J.X. Zhang, W.C. Liu, R.D.Fu, S.Xiang, A study on microstructure and mechanical properties of AA 3003 aluminum alloy joints by underwater friction stir welding, Materials Characterization, 2017, 127, 41–52.
DOI: 10.1016/j.matchar.2017.01.039
Google Scholar
[2]
H. Yang, Y. Gao, W. Qin, Y. Li, Microstructure and corrosion behavior of electroless Ni–P on sprayed Al–Ce coating of 3003 aluminum alloy, Surface and Coatings Technology, 2015, 281, 176-183.
DOI: 10.1016/j.surfcoat.2015.10.001
Google Scholar
[3]
G. Chen, G. Fu, W. Yan, C. Cheng, and Z. Zou, Mathematical model of dynamic recrystallization of aluminum alloy 3003, Metal Science and Heat Treatment, 2013, 55 (3-4), 220-225.
DOI: 10.1007/s11041-013-9609-5
Google Scholar
[4]
G.S. Fu, J.X. Kang, W.Z. Chen, Theoretical bases and ways of improving the effect of purification of molten aluminium, Light Alloy Fabrication Technology, 2002, 30 (6), 43-51.
Google Scholar
[5]
G.S. Fu, W.Z. Chen, and K.W. Qian, Synthetical technique of high-efficient melt-treatment of aluminum and its effect, The Chinese Journal of Nonferrous Metals, 2002, 12 (2), 269–274.
Google Scholar
[6]
G.Q. Chen, G.S. Fu, H.L. Chen, W.D. Yan, C.Z. Cheng, and Z.C. Zou, Research on hot deformation behavior of 3003 al alloy prepared by different melt-treatment methods, Applied Mechanics and Materials, 2011, 66-68, 1611-1616.
DOI: 10.4028/www.scientific.net/amm.66-68.1611
Google Scholar
[7]
G. Chen, G. Fu, H. Chen, W. Yan, C. Cheng and Z. Zou, Comparative study of the influence of various melt-treatment methods on hot deformation behavior of 3003 Al alloy, Metals and Materials International, 2012, 18 (1), 129-134.
DOI: 10.1007/s12540-012-0015-0
Google Scholar
[8]
G.S. Fu, W.Z. Chen, W.L Chen, J.X. Kang, Theory of high-efficient purification for melt- treatment of aluminum sheet and analysis on purifying technique, Foundry Technolog, 2004, 25 (4): 290-292.
Google Scholar
[9]
E.M. Alexander, N.M. Polina, Weak increase of the dynamic tensile strength of aluminum melt at the insertion of refractory inclusions, Computational Materials Science, 2016, 114: 178-182.
DOI: 10.1016/j.commatsci.2015.12.040
Google Scholar
[10]
G.Q. Chen, G.S. Fu, C.Z. Cheng, H.S. Wang, J.D. Wang, Determination on the thermal deformation critical condition of dynamic recrystallization of 3003 aluminum alloy, Transactions of Materials and Heat Treatment, 2017, 38 (11): 133-139.
Google Scholar
[11]
G. Chen, G. Fu, S. Lin, C. Cheng, W. Yan, and H. Chen, Simulation of flow of 3003 aluminum alloy under hot compressive deformation, Metal Science and Heat Treatment, 2013, 54 (11-12), 623-627.
DOI: 10.1007/s11041-013-9560-5
Google Scholar
[12]
G.Q. Chen, G.S. Fu, C.Z. Cheng, W.D. Yan, Z.C. Zou, S.Y. Lin, Effects of strain rate on dynamic recrystallization microstructure of 3003 aluminum alloy in process of hot deformation, Transactions of Materials and Heat Treatment, 2012, 33 (10): 26-31.
Google Scholar
[13]
G. Chen, G. Fu, H. Chen, C. Cheng, W. Yan, and S. Lin, Optimization of a hot deformation process of the 3003 aluminum alloy by processing maps, Metals and Materials International, 2012, 18 (5), 813-819.
DOI: 10.1007/s12540-012-5010-y
Google Scholar
[14]
M.E. Seniw, J.G. Conley, M.E. Fine, The effect of microscopic inclusion locations and silicon segregation on fatigue lifetimes of aluminum alloy A356 castings, Materials Science and Engineering: A, 2000, 285 (1-2): 43-48.
DOI: 10.1016/s0921-5093(00)00663-8
Google Scholar
[15]
G. Chen, G. Fu, T. Wei, C. Cheng, S. Lin and L. Song, Effect of melt treatment on microstructure and mechanical properties of AA3003 aluminum alloy, Materials and Technology, 2018, 52 (5): 69-77.
DOI: 10.17222/mit.2017.207
Google Scholar
[16]
G. Chen, G. Fu, T. Wei, C. Cheng, J. Wang and H. Wang, Establishment of dynamic recrystallization state diagram of hot deformation for 3003 aluminum alloy, Materials and Technology, 2018, 52 (3): 113-120.
DOI: 10.17222/mit.2017.176
Google Scholar
[17]
J.H. Park, S.B. Lee, D.S. Kim, Inclusion control of ferritic stainless steel by aluminum deoxidation and calcium treatment, Metallurgical and Materials Transactions B, 2005, 36 (1): 67-73.
DOI: 10.1007/s11663-005-0007-2
Google Scholar
[18]
G. Chen, G. Fu, T. Wei, C. Cheng, H. Wang and J. Wang, Effect of initial grain size on the dynamic recrystallization of hot deformation for 3003 aluminum alloy, Metals and Materials International, 2018, 24(3): 1-9.
DOI: 10.1007/s12540-018-0093-8
Google Scholar
[19]
N. Ravichandran, Y. V. R. K. Prasad, Dynamic recrystallization during hot deformation of aluminum: A study using processing maps, Metallurgical Transactions A, 1991, 22(10): 2339–2348.
DOI: 10.1007/bf02665000
Google Scholar
[20]
T.Sakai, H.Miura, A.Goloborodko, O.Sitdikov, Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475, Acta Materialia, 2009, 57 (1): 153-162.
DOI: 10.1016/j.actamat.2008.09.001
Google Scholar
[21]
G.Q. Chen, G.S. Fu, C.Z. Cheng, Effects of hot deformation parameters on microstructures and hardness of 3003 aluminum alloys, Materials Science and Technology, 2012, 20 (5): 116-120.
Google Scholar
[22]
J. J. Jonas, C. M. Sellars, and W. J. Mcg Tegart, Strength and structure under hot-working conditions, Metallurgical Reviews, 1969, 14 (5): 1-24.
DOI: 10.1179/mtlr.1969.14.1.1
Google Scholar