[1]
D.A. Broido, et al., Intrinsic lattice thermal conductivity of semiconductors from first principles, Applied Physics Letters. 91 (2007).
DOI: 10.1063/1.2822891
Google Scholar
[2]
M.S. Green, Markoff random processes and the statistical mechanics of time‐dependent phenomena. II. Irreversible processes in fluids, The Journal of Chemical Physics. 22 (1954) 398-413.
DOI: 10.1063/1.1740082
Google Scholar
[3]
R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, Journal of the Physical Society of Japan. 12 (1957) 570-586.
DOI: 10.1143/jpsj.12.570
Google Scholar
[4]
P.K. Schelling, S.R. Phillpot, and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Physical Review B. 65 (2002).
DOI: 10.1103/physrevb.65.144306
Google Scholar
[5]
C. Carbogno, R. Ramprasad, and M. Scheffler, Ab initio Green-Kubo approach for the thermal conductivity of solids, Physical Review Letters. 118 (2017).
DOI: 10.1103/physrevlett.118.175901
Google Scholar
[6]
P. Nath, et al., High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity, Scripta Materialia. 129 (2017) 88-93.
DOI: 10.1016/j.scriptamat.2016.09.034
Google Scholar
[7]
A.J.H. McGaughey and M. Kaviany, Phonon transport in molecular dynamics simulations: Formulation and thermal conductivity prediction, in Advances in Heat Transfer, G.A. Greene, et al., Editors. 2006, Elsevier. 169-255.
DOI: 10.1016/s0065-2717(06)39002-8
Google Scholar
[8]
S.V.J. Narumanchi, J.Y. Murthy, and C.H. Amon, Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronics, Heat and Mass Transfer. 42 (2006) 478-491.
DOI: 10.1007/s00231-005-0645-6
Google Scholar
[9]
A.C. Sparavigna, The Boltzmann equation of phonon thermal transport solved in the relaxation time approximation – I – Theory, Mechanics, Materials Science & Engineering Journal. 2016 (2016) 34-45.
Google Scholar
[10]
D.A. Broido, A. Ward, and N. Mingo, Lattice thermal conductivity of silicon from empirical interatomic potentials, Physical Review B. 72 (2005).
DOI: 10.1103/physrevb.72.014308
Google Scholar
[11]
J.E. Turney, et al., Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations, Physical Review B. 79 (2009).
DOI: 10.1103/physrevb.79.064301
Google Scholar
[12]
W. Li, et al., ShengBTE: A solver of the Boltzmann transport equation for phonons, Computer Physics Communications. 185 (2014) 1747-1758.
DOI: 10.1016/j.cpc.2014.02.015
Google Scholar
[13]
A. Sparavigna, Thermal conductivity of solid neon: An iterative analysis, Physical Review B. 56 (1997) 7775-7778.
DOI: 10.1103/physrevb.56.7775
Google Scholar
[14]
M. Omini and A. Sparavigna, An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity, Physica B: Condensed Matter. 212 (1995) 101-112.
DOI: 10.1016/0921-4526(95)00016-3
Google Scholar
[15]
D.G. Cahill, et al., Nanoscale thermal transport. II. 2003–2012, Applied Physics Reviews. 1 (2014).
Google Scholar
[16]
A.N. Ward, First principles theory of the lattice thermal conductivity of semiconductors, Boston College University Libraries, Boston, (2009).
Google Scholar