Preparation and Properties of YAG Porous Ceramics via the Casting Method

Article Preview

Abstract:

YAG has many excellent features and therefore has a wide range of applications. Preparation and properties of YAG porous ceramics via the casting method is investigated. Through analysis and discussion, the following conclusions can be obtained. With the increase of the content of foaming agent, in the foaming process of the slurry, bubbles generated by the foaming agent and water are gradually increased, the more pores are left in the body after casting, and when the blowing agent is too much, excessive bubbles are generated, which can lead to a very low strength of the green body and can not be formed and operated later. As the ratio of water to material increases, the porosity of the porous material increases. This is because when the blowing agent is constant, the amount of water required for foaming is constant, and the amount of foam generated is also constant. When the content of foaming agent and the ratio of water to material is both 1, the porosity and compressive strength is better.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-89

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kraxner, J. Chovanec, K. Haladejova, I. Petrikova, D. Galusek, Hollow polycrystalline YAG microspheres by flame synthesis, Mater. Letts. 204 (2017) 181-183.

DOI: 10.1016/j.matlet.2017.05.108

Google Scholar

[2] R. Marder, C. Estournes, G. Chevallier, Spark and plasma in spark plasma sintering of rigid ceramic nanoparticles:A model system of YAG, J. Eur. Ceram. Soc. 35 (2015) 211-218.

DOI: 10.1016/j.jeurceramsoc.2014.08.001

Google Scholar

[3] V. Amarantov, N.M. Khamaletdinova, R.P Yavetskiy, Colloid chemical properties of binary sols as precursors for YAG optical ceramics, Ceram. Int. 42 (2016) 17571-17580.

DOI: 10.1016/j.ceramint.2016.08.071

Google Scholar

[4] S. Hu, C. Lu, X. Liu, Z Xu, Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics, Optic. Mater. 60 (2016) 394-397.

DOI: 10.1016/j.optmat.2016.08.026

Google Scholar

[5] A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, A. Leriche, Role of LiF additive on spark plasma sintered transparent YAG ceramics, Ceram. Int. 43 (2017) 15626-15634.

DOI: 10.1016/j.ceramint.2017.08.119

Google Scholar

[6] H.M. Wang, Z.Y. Huang, J.S. Jiang, Unique mechanical properties of nano-grained YAG transparent ceramics compared with coarse-grained partners, Mater. Design. 105 (2016) 9-15.

DOI: 10.1016/j.matdes.2016.04.094

Google Scholar

[7] A. Poulia, P.M. Sakkas, D.G. Kanellopoulou, G. Sourkouni, C. Legros, Chr. Argirusis, Preparation of metal–ceramic composites by sonochemical synthesis of metallic nano-particles and in-situ decoration on ceramic powders, Ultrason. Sonochem. 31 (2016).

DOI: 10.1016/j.ultsonch.2016.01.031

Google Scholar

[8] J.H Xu, K. Bandyopadhyay, D. Jung, Experimental investigation on the correlation between nano-fluid characteristics and thermal properties of Al2O3 nano-particles dispersed in ethylene glycol-water mixture, Int. J. Heat Mass Trans. 94 (2016).

DOI: 10.1016/j.ijheatmasstransfer.2015.11.056

Google Scholar

[9] J.Y. Xu, B.L. Zou, S.Y. Tao, M.X. Zhang, X.Q. Cao, Fabrication and properties of Al2O3-TiB2-TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders, J.Alloy. Compd. 672 (2016) 251-259.

DOI: 10.1016/j.jallcom.2016.02.116

Google Scholar

[10] J.G. Song, F. Wang, M.H. Xu, Effect of synthesis conditions on the particle size and morphology of YAG powder, J. Ceram. Process. Res. 13 (2012) 154-157.

Google Scholar

[11] T.Y. Zhou, L. Zhang, S. Wei, L.X. Wang, Q.T. Zhang, MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution, J. Eur. Ceram. Soc. 38 (2018) 687-693.

DOI: 10.1016/j.jeurceramsoc.2017.09.017

Google Scholar

[12] G.Q. Xie, D.V.L. Luzgin, F. Wakai, H. Kimura, A. Inoue, Microstructure and properties of ceramic particulate reinforced metallic glassy matrix composites fabricated by spark plasma sintering, Mater. Sci. Eng. B 148 (2008) 77-81.

DOI: 10.1016/j.mseb.2007.09.027

Google Scholar

[13] M. Rahmani, O. Mirzaee, M. Tajally, M. Reza, L. Estarki, The effects of pH and excess Al3+ content on the microstructure and phase evolution of YAG polycrystals, Ceram. Int. 43 (2017)12563-12571.

DOI: 10.1016/j.ceramint.2017.06.131

Google Scholar

[14] X.H. Su, J. Zhou, G. Bai, J. Zhang, P. Zhao, Low temperature synthesis and characterization of YAG nanopowders by polyacrylamide gel method, Ceram. Int. 42 (2016) 17497-17502.

DOI: 10.1016/j.ceramint.2016.08.058

Google Scholar

[15] S. Bera, C.D. Nie, M.G. Soskind, Y. Li, E.G. Johnson, Growth and lasing of single crystal YAG fibers with different Ho3+ concentrations, Optic. Mater. 75 (2018) 44-48.

DOI: 10.1016/j.optmat.2017.09.048

Google Scholar

[16] M.S. Asl, A.S. Namini, A. Motallebzadeh, M. Azadbeh, Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium, Mater. Chem. Phys. 203 (2018) 266-273.

DOI: 10.1016/j.matchemphys.2017.09.069

Google Scholar

[17] M.H. Xu, J.G Song, D.M. Du, F. Wang, Y.L Li, G.C Ji, F. Chen, The mechanism of controlling pore microstructure for YAG porous ceramics, Key Eng. Mater. 680 (2016) 216-219.

DOI: 10.4028/www.scientific.net/kem.680.216

Google Scholar