Fabrication Processes of SOI Structure for Optical Nonreciprocal Devices

Article Preview

Abstract:

Fabrication processes of a magneto-optic waveguide with a Si guiding layer for an optical isolator employing a nonreciprocal guided-radiation mode conversion are investigated. The optical isolator is constructed on a silicon-on-insulator (SOI) structure. The magneto-optic waveguide is fabricated by bonding the Si guiding layer with a cerium-substituted yttrium iron garnet (Ce:YIG). The relationship of waveguide geometric parameters is determined at a wavelength of 1550 nm. The results show that larger tolerance for isolator operation can be obtained at smaller gaps between Si and Ce:YIG. Bonding processes including photosensitive adhesive bonding and surface activated bonding are then compared. It is found that the surface activated bonding process is easier to control and more promising than the photosensitive adhesive bonding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Yokoi, Calculation of nonreciprocal phase shift in magneto-optic waveguides with Ce:YIG layer, J. Opt. Materials 31 (2008) 189-192.

DOI: 10.1016/j.optmat.2008.03.005

Google Scholar

[2] F. Auracher, H.H. Witte, A new design for an integrated optical isolator, Opt. Commun 13 (1975) 435-438.

DOI: 10.1016/0030-4018(75)90140-6

Google Scholar

[3] H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift, Appl. Opt. 39 (2000) 6158-6164.

DOI: 10.1364/ao.39.006158

Google Scholar

[4] T. Shintaku, T. Uno, Optical waveguide isolator based on non- reciprocal radiation, J. Appl. Phys. 76 (1994) 8155-8159.

DOI: 10.1063/1.357867

Google Scholar

[5] W. Bogaerts, M. Fiers, P. Dumon, Design challenges in silicon photonics, IEEE J. of Selected Topics in Quantum Electronics 20 (2014) 8202008.

DOI: 10.1109/jstqe.2013.2295882

Google Scholar

[6] A. E. -J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. -C. Tern, T. -Y. Liow, Review of silicon photonics foundry efforts, IEEE J. of Selected Topics in Quantum Electron. 20 (2014) 8300112.

DOI: 10.1109/jstqe.2013.2293274

Google Scholar

[7] H. Yamada, Analysis of optical coupling for SOI waveguides, PIERS online 6 (2010) 165-168.

DOI: 10.2529/piers090906022025

Google Scholar

[8] T. Mizumoto, Y. Shoji, R. Takei, Direct wafer bonding and its application to waveguide optical isolators, J. Materials 5 (2012) 985-1004.

DOI: 10.3390/ma5050985

Google Scholar

[9] H. Yokoi, K. Sasaki, UV-activated bonding between magnetic garnet and Si for optical isolator with Si guiding layer, Electrochem. Soc. Trans. 16 (2008) 155-161.

DOI: 10.1149/1.2982865

Google Scholar

[10] S. Ghosh, S. Keyvavinia, W. V. Roy, T. Mizumoto, G. Roelkens, R. Baets, Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding, Opt. Express 20 (2012) 1839–1848.

DOI: 10.1364/oe.20.001839

Google Scholar

[11] H. Yokoi, S. Choowitsakunlert, K. Kabayashi, K. Takagiwa, Optical isolator with Si guiding layer fabricated by photosensitive adhesive bonding, Electrochem. Soc. Inc.75 (2016) 215-220.

DOI: 10.1149/07509.0215ecst

Google Scholar

[12] Y. Shoji, M. Ito, Y. Shirato, T. Mizumoto, MZI optical isolator with Si-wire waveguides by surface-activated direct bonding, Opt. Exp. 20 (2012) 18440-18448.

DOI: 10.1364/oe.20.018440

Google Scholar

[13] T. Shintaku, T. Uno, M. Kobayashi, Magneto-optic channel waveguide in Ce-substituted yttrium iron garnet, J. Appl. Phys. 74 (1993) 4877-4881.

DOI: 10.1063/1.354318

Google Scholar

[14] M. Gomi, S. Satoh, M. Abe, Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering, Jpn. J. Appl. Phys. 27 (1988) L1536-L1538.

DOI: 10.1143/jjap.27.l1536

Google Scholar