Optical Properties and Carrier Transport in a Biased GaAs/AlAs Asymmetric Quintuple-Quantum-Well Superlattice

Article Preview

Abstract:

Photoluminescence (PL) properties and carrier transport in a GaAs/AlAs asymmetric quintuple-quantum well superlattice (AQQW-SL) were investigated. Since AQQWs are separated by very thin AlAs barriers, various carrier transport phenomena are expected due to the strong coupling of wave functions between the Γ states in the GaAs QWs and the X states in the AlAs barriers. A 20-period AQQW was embedded in the i-layer of a pin diode. A PL signal between the ground Γ and the heavy hole (hh) states was observed around 740 nm. However, another PL branch was observed at about 665 nm around 6 V. Based on the numerical calculation of the Γ and X wave functions, the electron transport from the X state in the thick AlAs barrier (X11) to the Γ state in the third QW (Γ31) occurs at 6.1 V. Thus, a PL signal at 665 nm can be attributed to the recombination between Γ31 and hh11.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-125

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Esaki and R. Tsu, Superlattice and negative conductivity in semiconductors, IBM Res. Note, RC-2418 (1969).

Google Scholar

[2] L. Esaki, A Bird's-Eye View on the Evolution of Semiconductor Superlattices and Quantum Wells, IEEE J. Quantum Electron., QE-22 (1986) 1611-1624.

DOI: 10.1109/jqe.1986.1073162

Google Scholar

[3] E. Mendez, F. Agullo-Rueda, J. Hong, Stark Localization in GaAs-GaAlAs Superlattices under an Electric Field, Phys. Rev. Lett. 60 (1988) 2426-2429.

DOI: 10.1103/physrevlett.60.2426

Google Scholar

[4] H. Schneider, A. Fischer, K. Ploog, Franz-Keldysh oscillations and Wannier-Stark localization in GaAs/AlAs superlattices with single-monolayer AlAs barriers, Phys. Rev. B, 45 (1992) 6329-6332.

DOI: 10.1103/physrevb.45.6329

Google Scholar

[5] S. Lee, H. Ahn, S. Kim, Wannier-Stark Mangnetophonon Resonance in Semiconductor Superlattices, New Phys.:Sae Mulli, 66 (2016) 1359-1365.

DOI: 10.3938/npsm.66.1359

Google Scholar

[6] T. Meier, G. von Plessen, P. Thomas, W. Koch, Coherent electric-field effects in semiconductors, Phys. Rev. Lett., 73 (1994) 902-905.

DOI: 10.1103/physrevlett.73.902

Google Scholar

[7] M. Greenaway, A. Balanov, D. Fowler, A. Kent, T. Fromhold, Using acoustic waves to induce high-frequency current oscillations in superlattices, Phys. Rev. B, 81 (2010) 235313.

DOI: 10.1103/physrevb.81.235313

Google Scholar

[8] C. Minot, V. Jagtap, E. Galopin, J. Harmand, S. Barbay, J. Mangeney, Voltage bistability of coherent electron injection and nonlinear dynamics of a Bloch oscillation in a semiconductor superlattice, Phys. Rev. B, 91 (2015) 245308.

DOI: 10.1103/physrevb.91.245308

Google Scholar

[9] S. Rott, N. Linder, G. Döhler, Field dependence of the hopping drift velocity in semiconductor superlattices, Phys. Rev. B, 65 (2002) 195301.

DOI: 10.1103/physrevb.65.195301

Google Scholar

[10] B. Glavin, V. Kochelap, T. Linnik, K. Kim, M. Stroscio, Generation of high-frequency coherent acoustic phonons in superlattices under hopping transport. I. Linear theory of phonon instability, Phys. Rev. B, 65 (2002) 085303.

DOI: 10.1103/physrevb.65.085303

Google Scholar

[11] C. Minot, Quantum model of electronic transport in superlattice minibands, Phys. Rev. B, 70 (2004) 161309(R).

DOI: 10.1103/physrevb.70.161309

Google Scholar

[12] O. Tadanaga, T. Kagawa, Y. Itoh, C. Amano, Y. Matsuoka, T. Kurokawa, 1.3-mm Surface-Normal Reflective Optical Modulators Based on the Wannier-Stark Effect in InP/InGaAsP Superlattices, Jpn. J. Appl. Phys. 38 (1999) 1278-1281.

DOI: 10.1143/jjap.38.1278

Google Scholar

[13] H. Neitzert, C. Cacciatore, D. Campi, C. Rigo, Self-electro-optic effect device in waveguiding configuration as optical switch and power discriminator, Elec. Lett. 31 (1995) 97-99.

DOI: 10.1049/el:19950061

Google Scholar

[14] H. Neitzert, A Wannier-Stark waveguide electroabsorption modulator as a low-power switch and its application as NAND, NOR or EXOR all-optical logic gates, J. Opt. A: Pure and Applied Opt. 3 (2001) 218-221.

DOI: 10.1088/1464-4258/3/3/312

Google Scholar

[15] C. Waschke, H. Roskos, R. Schwedler, K. Leo, H. Kurz, K. Kohler, Coherent Submillimeter-Wave Emission from Bloch Oscillations in a Semiconductor Superlattice, Phys. Rev. Lett. 70, (1993) 3319-3322.

DOI: 10.1103/physrevlett.70.3319

Google Scholar

[16] T. Hyart, J. Mattas, K. Alekseev, Model of the Influence of an External Magnetic Field on the Gain of Terahertz Radiation from Semiconductor Superlattices, Phys. Rev. Lett. 103 (2009) 117401.

DOI: 10.1103/physrevlett.103.117401

Google Scholar

[17] V. Maksimenko, V. Makarov, A. Koronovskii, A. Hramov, A. Balanov, 
Controlling of the electric field profile in the miniband semiconductors in the presence of THz Bloch oscillations, IRMMW-THz, 8067043 (2017).

DOI: 10.1109/irmmw-thz.2016.7758958

Google Scholar

[18] J. Faist, F. Capasso, D. Sivco, C. Sirtori, A. Hutchinson, A. Cho, Quantum cascade laser, Science, 264 (1994) 553-556.

DOI: 10.1126/science.264.5158.553

Google Scholar

[19] K. Hata, M. Hosoda, K. Akahane, and N. Ohtani, Evidence for various higher subband resonances and interferences in a GaAs/AlAs asymmetric quadruple-quantum-well superlattice analyzed from its photoluminescence properties, Phys. Rev. B, 95 (2017).

DOI: 10.1103/physrevb.95.075309

Google Scholar

[20] D. F. Nelson, R. C. Miller, and D. A. Kleinman, Band nonparabolicity effects in semiconductor quantum wells, Phys. Rev. B, 35 (1987) 7770-7773.

DOI: 10.1103/physrevb.35.7770

Google Scholar

[21] P. Debernardi, P. Fasano, Quantum confined Stark effect in semiconductor quantum wells including valence band mixing and Coulomb effect, IEEE J. Quantum Electron, 29 (1993) 2741-2755.

DOI: 10.1109/3.248932

Google Scholar