Analysis of Electric Transport Mechanism of Barium Titanate by Impedance Spectroscopy

Article Preview

Abstract:

Barium titanate (BTO) samples were prepared by nanomilling based solid state reaction method. Dielectric behavior of BTO sample has been investigated by temperature dependent impedance spectroscopy. The impedance analysis of BTO samples confirm that hopping of electrons and defects coexisted in sample and contribution of grain and grain boundary to dielectric behavior is discussed. A single semicircular arc obtained by Nyquist plots whose radius decreased with increase in temperature illustrates the prominent role of grains. The activation energy of defects was calculated from Arrhenius plot. These defects may be due to oxygen vacancies and hopping between Ti+4 to Ti+3 ions.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J.B. Xu, J.W. Zhai, X. Yao, Structure and dielectric nonlinear characteristics of BaTiO3 thin films prepared by low temperature process, J. Alloys Compd., 467 (2009) 567-571.

DOI: 10.1016/j.jallcom.2007.12.060

Google Scholar

[2] E.K. Nyutu, C.H. Chen, P.K. Dutta, S.L. Suib, Effect of microwave frequency on hydrothermal synthesis of nanocrystalline tetragonal barium titanate, J. Phys. Chem. C, 112 (2008) 9659-9667.

DOI: 10.1021/jp7112818

Google Scholar

[3] H. Fan, L. Liu, Optimizating design of the microstructure of sol-gel derived BaTiO3 ceramics by artificial neural networks, J. Electroceram., 22 (2009) 291-296.

DOI: 10.1007/s10832-007-9394-x

Google Scholar

[4] F. Wan, J.G. Han, Z.Y. Zhu, Dielectric response in ferroelectric BaTiO3, Phys. Lett. A, 372 (2008) 2137-2140.

DOI: 10.1016/j.physleta.2007.11.009

Google Scholar

[5] A.K. Nath, C. Jiten, Influence of ball milling parameters on the particle size of barium titanate nanocrystalline powders, Physi. B, 405 (2010) 430–434.

DOI: 10.1016/j.physb.2009.08.299

Google Scholar

[6] S. N. Humera, H. Noor, S. Riaz and S. Naseem, Dielectric and structural analysis of barium titanate nanoparticles prepared by nano ball milling technique, Presented at The 2016 World Congress on Adv.Civ. Envir. Mat. Res., August 28-September 1, 2016, ICC Jeju, Jeju Island, Korea.

Google Scholar

[7] D.C. Sinclair, et al., CaCu3Ti4O12: One-step internal barrier layer capacitor, Appl. Phys. Lett., 80 (2002) 2153–2155.

DOI: 10.1063/1.1463211

Google Scholar

[8] J.C. Anderson, Dielectrics, Spottiswoode, Ballantyne & Co Ltd, London and Colcheester, (1964).

Google Scholar

[9] A.Verma, O.P. Thankur, C. Parkash, et al., Temperature dependence of electrical properties of nickel–zinc ferrites processed by the citrate precursor technique, Mater. Sci. Eng. B, 116 (2005) 1-6.

DOI: 10.1016/j.mseb.2004.08.011

Google Scholar

[10] S. Neogi, U. Chowdhury, A. Kumar Chakraborty, J. Ghosh, Effect of mechanical milling on the structural and dielectric properties of BaTiO3 powders, Micro & Nano Lett., 10 (2015) 109-114.

DOI: 10.1049/mnl.2013.0751

Google Scholar

[11] S.S. Kumbhar, M.A. Mahadik, et al., Structural and electrical properties of barium titanate (BaTiO3) thin films obtained by spray pyrolysis method, Mater. Sci.-Poland., 33 (2015) 852-861.

DOI: 10.1515/msp-2015-0107

Google Scholar

[12] S. Kumar, N. Ahlawat, N. Ahlawat, Microwave sintering time optimization to boost structural and electrical properties in BaTiO3 ceramics, J. Integr. Sci. Technol., 4 (2016) 10-16.

Google Scholar

[13] Y. D. Kolekar, L. J. Sanchez, C. V. Ramana, Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite, J. Appl. Phys., 115 (2014) 144106-11.

DOI: 10.1063/1.4870232

Google Scholar

[14] N. R. Kalidindi, K. Kamala Bharathi, C. V. Ramana, The disordering effect of Ti observed in the microstructure and electrical properties of W0.95Ti 0.05 O3 thin films, Appl. Phys. Lett., 14 (2010) 142107.

DOI: 10.1063/1.3496473

Google Scholar

[15] R. S. Vemuri, K.K. Bharathi, S.K. Gullapalli, C. V. Ramana, Effect of structure and size on the electrical properties of nanocrystalline WO3 films. ACS Appl. Mater. & Interfac., 2 (2010) 2623-2628.

DOI: 10.1021/am1004514

Google Scholar

[16] S. B. Narangi, D. Kaur, K. Pubby, Effect of substitution of samarium and lanthanum on dielectric and electrical properties of barium titanate, Ferroelectrics., 486 (2015) 74–85.

DOI: 10.1080/00150193.2015.1100033

Google Scholar

[17] R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles, J. Appl. Phys., 112 (2012) 084321-8.

DOI: 10.1063/1.4759436

Google Scholar

[18] W. D. Kingery, Introduction to Ceramics, Wiley, New York, NY, USA, (1960).

Google Scholar

[19] O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb (Fe1∕ 2Nb1∕ 2) O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys., 97 (2005).

DOI: 10.1063/1.1870099

Google Scholar