Dependence of Lattice Distortion and Dielectric Response of Zinc Aluminate on Milling Frequency

Article Preview

Abstract:

Zinc aluminate (ZnAl2O4) samples were prepared using nanomilling based solid state reaction method for several potential applications. Effect of milling frequency on structural and dielectric behavior of ZnAl2O4 has been explored systemically. Investigation of crystal structure reveals that change in lattice parameter by milling does not alter the cubic lattice of ZnAl2O4. This milling frequency at the nanosize resulted in a gradual decrease in the particle size, which can be attributed to the inhomogeneous defects. Grain size in nanometers has been calculated by XRD using Debye-Scherrer formula. Dielectric measurements performed in the range of 20Hz-20MHz confirms the Maxwell –Wagner two layer model which is consistent with the Koop’s theory. High value of ac conductivity indicates that milling blocked the ionic transport. As a result of Nyquist plots, a single semicircle was obtained which indicated the leading role of grain (bulk). The variation in the semicircle radii for different samples is due to the influence of milling frequency.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] N. Ueda, T. Omata, N. Hikuma, K. Ueda, H. Hizoquchi, T. Hashimoto, H. Kawazoe, New oxide phase with wide band gap and high electro-conductivity, MgIn2O4, Appl. Phys. Lett., 61 (1992) 1954-(1955).

DOI: 10.1063/1.108374

Google Scholar

[2] R. Pandey, J.D. Gale, S.K. Sampath, J.M. Recio, Atomistic simulation study of spinel oxides: zinc aluminate and zinc gallate, J. Am. Ceram. Soc., 82 (1999) 3337–3341.

DOI: 10.1111/j.1151-2916.1999.tb02248.x

Google Scholar

[3] J. Wrzyszcz, M. Zawadzki, J. Trawczyński, H. Grabowska, W. Miśta, Some catalytic properties of hydrothermally synthesised zinc aluminate spinel, Appl. Catalysis. A, 210 (2001) 263-269.

DOI: 10.1016/s0926-860x(00)00821-8

Google Scholar

[4] S. Mathur, M. Veith, M. Haas, H. Shen, N. Lecerf, V. Huch, S. Hüfner, R. Haberkorn, H.P. Beck, M. Jilavi, Single-source sol–gel synthesis of nano-crystalline ZnAl2O4: structural and optical properties, J. Am. Ceram. Soc., 84 (2001) 1921–(1928).

DOI: 10.1111/j.1151-2916.2001.tb00938.x

Google Scholar

[5] Y. Yang, X.W. Sun, B.K. Tay, J.X. Wang, Z.L. Dong, H.M. Fan, Twinned Zn2TiO4 spinel nanowires using ZnO nanowires as a template, Adv. Mater., 19 (2007) 1839–1844.

DOI: 10.1002/adma.200700299

Google Scholar

[6] F. Le Pelier, P. Chaumette, J. Saussey, M.M. Bettahar, J.C. Lavalley, In-situ FT-IR spectroscopy and kinetic study of methanol synthesis from CO/H2 over ZnAl2O4 and Cu-ZnAl2O4 catalysts, Mol. Catal. A: Chem., 122 (1997) 131-139.

DOI: 10.1016/s1381-1169(97)00034-4

Google Scholar

[7] L.R. Cobb, Preparation of Polymethylbenzenes, U.S. Patent 4.568.784, (1985).

Google Scholar

[8] A. Escardino, J.L. Amorós, A. Gozalbo, M.J. Orts, A. Moreno, Gahnite devitrification in ceramic frits: mechanism and process kinetics. Journal of the American Ceramic Society, J. Am. Ceram. Soc., 83 (2000) 2938-2944.

DOI: 10.1111/j.1151-2916.2000.tb01664.x

Google Scholar

[9] K. Kumar, K. Ramamoorthy, P.M. Koinkar, R. Chandramohan, K. Sankaranarayanan, A novel in situ synthesis and growth of ZnAl2O 4 thin films. J. Cryst. Grow. 289 (2006) 405-407.

DOI: 10.1016/j.jcrysgro.2005.11.007

Google Scholar

[10] Y. Wang, K. Wu, As a Whole: Crystalline zinc aluminate nanotube array-nanonet, J. Am. Chem. Soc., 127 (2005) 9686–9687.

DOI: 10.1021/ja0505402

Google Scholar

[11] A. Thomas, B. Premlal, M. Eswaramoorthy, Synthesis of mesoporous Zn–Al spinel oxide nanorods with membrane like morphology, Mater. Res. Bull., 41 (2006) 1008–1014.

DOI: 10.1016/j.materresbull.2006.03.025

Google Scholar

[12] R. Mouazer, M. Persin, M. Cretin, A. Larbot A. Preparation and characterization of NASICON–ZnAl2O4-based ultrafiltration membranes, Colloids and Surfaces A: Physicochem. Eng. Aspects., 244 (2004) 95–104.

DOI: 10.1016/j.colsurfa.2004.06.005

Google Scholar

[13] G. Aguilar-Rfos, M. Valenzuela, P. Salas, H. Armendfiriz, P. Bosch, G. Del Toro, R. Silva, V. Bertfn, S. Castillo, A. Ramfrez-Solfs, I. Schifter, Hydrogen interactions and catalytic properties of platinum-tin supported on zinc aluminate, Appl. Catal. A-Gen., 127 (1995).

DOI: 10.1016/0926-860x(95)00269-3

Google Scholar

[14] E. Martinez-Sanchez, M. Garcia-Hipolito, J. Guzman, F. Ramos-Brito, J. Santoyo- Salazar, R. Martinez Martinez, O. Alvarez-Fregoso, M.I. Ramos-Cortes, J.J. Mendez-Delgado, C. Falcony, Cathodoluminescent characteristics of Sm doped ZnAl2O4 nanostructured powders, Phys. Stat. Sol., (a) 202 (2005).

DOI: 10.1002/pssa.200406906

Google Scholar

[15] Y. Wu, J. Du, K.L. Choy, L.L. Hench, J. Guo, Formation of interconnected microstructural ZnAl2O4 films prepared by sol–gel method, Thin Solid Fil., 472 (2005) 150– 156.

DOI: 10.1016/j.tsf.2004.07.084

Google Scholar

[16] A. R. Phani, M. Passacantando, S. Santucci, Synthesis and characterization of zinc aluminum oxide thin films by sol–gel technique, Mater. Chem. Phys., 68 (2001) 66–71.

DOI: 10.1016/s0254-0584(00)00270-4

Google Scholar

[17] Z. Chen, E. Shi, Y. Zheng, W. Li, N. Wu, W. Zhong, W. Synthesis of monodispersed ZnAl2O4 powders under hydrothermal conditions, Mater. Lett., 56 (2002) 601– 605.

DOI: 10.1016/s0167-577x(02)00561-x

Google Scholar

[18] M. Zawadzki, Synthesis of nanosized and microporous zinc aluminate spinel by microwave assisted hydrothermal method (microwave–hydrothermal synthesis of ZnAl2O4), Sol. Stat. Sci,. 8 (2006) 14–18.

DOI: 10.1002/chin.200614024

Google Scholar

[19] H. Noor, H. Yousaf, M. A. Naseer, N. Iqbal, N. Tariq, S. Riaz and S. Naseem, Ball milling effect on structural, optical and dielectric properties of Y2O3, Proceedings of the International Conference on Sustainable Materials Science and Technology, 15-17 July 2015, Paris, France.

Google Scholar

[20] A.F. Osorio, D.H. Mendoza, E.P. Villanueva, Synthesis of nano-crystalline (Zn1-xCox) Al2O3 solid solution: structural and optical properties, NSTI-Nanotech, 1 (2010) 448-451.

Google Scholar

[21] E.M.A. Jamal, D.S. Kumar, M.R. Anantharaman, On structural, optical and dielectric properties of zinc aluminate nanoparticles, Bull. Mater. Sci., 34 (2011) 251-259.

DOI: 10.1007/s12034-011-0071-y

Google Scholar

[22] S. Talam, S.R. Karumuri, N. Gunnam, Synthesis, Characterization and spectroscopic properties of ZnO nanoparticles, ISRN Nanotechnol., 2012 (2012) 1-7.

DOI: 10.5402/2012/372505

Google Scholar

[23] V. Priiyawong, V. Thongpool, P. Asanithi, P. Limsuwan, Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique, J. Nanomater., 2012 (2012) 1-6.

DOI: 10.1155/2012/819403

Google Scholar

[24] B.D. Culity, Elements of x-ray diffraction, Addison-Wesley Publishing Company, (1956).

Google Scholar

[25] S. Neogi, U. Chowdhury, A.K. Chakraborty, J. Ghosh, Effect of mechanical milling on the structural and dielectric properties of BaTiO3 powders, Micro & Nano Lett., 10 (2015) 109-114.

DOI: 10.1049/mnl.2013.0751

Google Scholar

[26] S. S. Kumbhar, M. A. Mahadik, P. K. Chougule, V. S. Mohite, Y. M. Hunge, K. Y. Rajpure, A. V. Moholkar, C. H. Bhosale, Structural and electrical properties of barium titanate (BaTiO3) thin films obtained by spray pyrolysis method, Mater. Sci.-Poland., 33 (2015).

DOI: 10.1515/msp-2015-0107

Google Scholar

[27] K. W. Wagner, Zur theorie der unvollkommenen dielektrika, Annalen der Physik., 345 (1993), 817-855.

DOI: 10.1002/andp.19133450502

Google Scholar

[28] E. Barsoukov, J. R. Macdonald, Theory, experiment and application, John Wiley & sons, Inc, (2005).

Google Scholar

[29] Y. D. Kolekar, L. J. Sanchez, C. V. Ramana, Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite, J. Appl. Phys., 115 (2014) 144106-11.

DOI: 10.1063/1.4870232

Google Scholar