[1]
E. Aghion, B. Bronfin, Magnesium alloys development towards the 21st century, in: Mater. Sci. Forum, Trans. Tech. Publ., 350 (2000) 19-30.
DOI: 10.4028/www.scientific.net/msf.350-351.19
Google Scholar
[2]
M.M. Avedesian, H. Baker, ASM specialty handbook: magnesium and magnesium alloys, ASM Int., (1999).
Google Scholar
[3]
D. Carou, E.M. Rubio, J.P. Davim, Machinability of Magnesium and its Alloys: A Review, in: Traditional Machining Processes, Springer, Berlin, 2015, pp.133-152.
DOI: 10.1007/978-3-662-45088-8_5
Google Scholar
[4]
K. Lee, C. Kang, K. Kim, Effect of hot working on the damping capacity and mechanical properties of AZ31 magnesium alloy, in: IOP Conf. Ser.: Mater. Sci. Eng., 82 (2015) 012114.
DOI: 10.1088/1757-899x/82/1/012114
Google Scholar
[5]
D.-G. Kim, K.-M. Lee, J.-S. Lee, Y.-O. Yoon, H.-T. Son, Evolution of microstructures and textures in magnesium AZ31 alloys deformed by normal and cross-roll rolling, Mater. Lett., 75 (2012) 122-125.
DOI: 10.1016/j.matlet.2012.01.141
Google Scholar
[6]
X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, Mechanical properties of Mg–Al–Zn alloy with a tilted basal texture obtained by differential speed rolling, Mater. Sci. Eng., A, 488 (2008) 214-220.
DOI: 10.1016/j.msea.2007.11.029
Google Scholar
[7]
H. Somekawa, T. Mukai, Effect of texture on fracture toughness in extruded AZ31 magnesium alloy, Scripta Mater., 53 (2005) 541-545.
DOI: 10.1016/j.scriptamat.2005.04.048
Google Scholar
[8]
S.-H. Kim, B.-S. You, C.D. Yim, Y.-M. Seo, Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets, Mater. Lett., 59 (2005) 3876-3880.
DOI: 10.1016/j.matlet.2005.07.024
Google Scholar
[9]
S.R. Agnew, M.H. Yoo, C.N. Tome, Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y, Acta Mater., 49 (2001) 4277-4289.
DOI: 10.1016/s1359-6454(01)00297-x
Google Scholar
[10]
S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys, Acta Mater., 59 (2011) 429-439.
DOI: 10.1016/j.actamat.2010.08.031
Google Scholar
[11]
S.R. Agnew, O. Duygulu, A mechanistic understanding of the formability of magnesium: Examining the role of temperature on the deformation mechanisms, Trans. Tech. Publ., 419 (2012) 177-188.
DOI: 10.4028/www.scientific.net/msf.419-422.177
Google Scholar
[12]
R. Sánchez-Martín, C. Zambaldi, M.T. Pérez-Prado, J.M. Molina-Aldareguia, High temperature deformation mechanisms in pure magnesium studied by nanoindentation, Scripta Mater., 104 (2015) 9-12.
DOI: 10.1016/j.scriptamat.2015.03.012
Google Scholar
[13]
P. Hidalgo-Manrique, V. Herrera-Solaz, J. Segurado, J. Llorca, F. Gálvez, O.A. Ruano, S.B. Yi, M.T. Pérez-Prado, Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature, Acta Mater., 92 (2015) 265-277.
DOI: 10.1016/j.actamat.2015.03.053
Google Scholar
[14]
A. Vinogradov, D. Orlov, A. Danyuk, Y. Estrin, Deformation mechanisms underlying tension–compression asymmetry in magnesium alloy ZK60 revealed by acoustic emission monitoring, Mater. Sci. Eng., A 621 (2015) 243-251.
DOI: 10.1016/j.msea.2014.10.081
Google Scholar
[15]
J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Mater., 61 (2013) 818-843.
DOI: 10.1016/j.actamat.2012.10.044
Google Scholar
[16]
X. Huang, K. Suzuki, Y. Chino, Annealing behaviour of Mg–3Al–1Zn alloy sheet obtained by a combination of high-temperature rolling and subsequent warm rolling, J. All. Comp., 509 (2011) 4854-4860.
DOI: 10.1016/j.jallcom.2011.01.189
Google Scholar
[17]
I. Ulacia, S. Yi, M.T. Pérez Prado, N.V. Dudamell, F. Galvez Diaz-Rubio, D. Letzig, I. Hurtado, Texture evolution of AZ31 magnesium alloy sheet at high strain rates, (2010).
DOI: 10.4028/www.scientific.net/msf.706-709.1255
Google Scholar
[18]
A. Styczynski, C. Hartig, J. Bohlen, D. Letzig, Cold rolling textures in AZ31 wrought magnesium alloy, Scripta Mater., 50 (2004) 943-947.
DOI: 10.1016/j.scriptamat.2004.01.010
Google Scholar
[19]
X. Huang, K. Suzuki, Y. Chino, Different annealing behaviours of warm rolled Mg–3Al–1Zn alloy sheets with dynamic recrystallized microstructure and deformation microstructure, Mater. Sci. Eng., A 560 (2013) 232-240.
DOI: 10.1016/j.msea.2012.09.062
Google Scholar
[20]
X. Yang, Y. Okabe, H. Miura, T. Sakai, Effect of prior strain on continuous recrystallization in AZ31 magnesium alloy after hot deformation, Mater. Sci. Eng., A 535 (2012) 209-215.
DOI: 10.1016/j.msea.2011.12.066
Google Scholar
[21]
X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, Effects of thickness reduction per pass on microstructure and texture of Mg–3Al–1Zn alloy sheet processed by differential speed rolling, Scripta Mater., 60 (2009) 964-967.
DOI: 10.1016/j.scriptamat.2009.02.022
Google Scholar
[22]
X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, Microstructural and textural evolution of AZ31 magnesium alloy during differential speed rolling, J. All. Comp., 479 (2009) 726-731.
DOI: 10.1016/j.jallcom.2009.01.046
Google Scholar
[23]
S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, P.K. Liaw, Crystallographic texture evolution of three wrought magnesium alloys during equal channel angular extrusion, Mater. Sci. Eng., A 408 (2005) 72-78.
DOI: 10.1016/j.msea.2005.07.052
Google Scholar
[24]
R. Lapovok, L.S. Tóth, A. Molinari, Y. Estrin, Strain localisation patterns under equal-channel angular pressing, J. Mech. Phy. Sol., 57 (2009) 122-136.
DOI: 10.1016/j.jmps.2008.09.012
Google Scholar
[25]
P. Serre, R.B. Figueiredo, N. Gao, T.G. Langdon, Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion, Mater. Sci. Eng., A 528 (2011) 3601-3608.
DOI: 10.1016/j.msea.2011.01.066
Google Scholar
[26]
H. Wang, P.D. Wu, J. Wang, Modeling inelastic behavior of magnesium alloys during cyclic loading–unloading, Int. J. Plast., 47 (2013) 49-64.
DOI: 10.1016/j.ijplas.2013.01.007
Google Scholar
[27]
A.N. Albakri, B. Mansoor, H. Nassar, M.K. Khraisheh, Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy-A numerical and experimental investigation, J. Mater. Proc. Tech., 213 (2013) 279-290.
DOI: 10.1016/j.jmatprotec.2012.09.015
Google Scholar
[28]
B. Song, G. Huang, H. Li, L. Zhang, G. Huang, F. Pan, Texture evolution and mechanical properties of AZ31B magnesium alloy sheets processed by repeated unidirectional bending, J. All. Comp., 489 (2010) 475-481.
DOI: 10.1016/j.jallcom.2009.09.090
Google Scholar
[29]
N. Li, G. Huang, R. Xin, Q. Liu, Effect of initial texture on dynamic recrystallization and deformation mechanisms in AZ31 Mg alloy extruded at 573K, Mater. Sci. Eng., A 569 (2013) 18-26.
DOI: 10.1016/j.msea.2013.01.027
Google Scholar
[30]
X. Huang, K. Suzuki, Y. Chino, Static recrystallization and mechanical properties of Mg–4Y–3RE magnesium alloy sheet processed by differential speed rolling at 823K, Mater. Sci. Eng., A 538 (2012) 281-287.
DOI: 10.1016/j.msea.2012.01.044
Google Scholar
[31]
N. Stanford, M.D. Callaghan, B. de Jong, The effect of rare earth elements on the behaviour of magnesium-based alloys: Part 1—Hot deformation behaviour, Mater. Sci. Eng., A 565 (2013) 459-468.
DOI: 10.1016/j.msea.2012.12.023
Google Scholar
[32]
R. Li, F. Pan, B. Jiang, Q. Yang, A. Tang, Effects of combined additions of Li and Al–5Ti–1B on the mechanical anisotropy of AZ31 magnesium alloy, Mater., Des. 46 (2013) 922-927.
DOI: 10.1016/j.matdes.2012.11.032
Google Scholar
[33]
H. Borkar, M. Pekguleryuz, Microstructure and texture evolution in Mg–1% Mn–Sr alloys during extrusion, J. Mater. Sci., 48 (2013) 1436-1447.
DOI: 10.1007/s10853-012-6896-y
Google Scholar
[34]
M. Pekguleryuz, M. Celikin, M. Hoseini, A. Becerra, L. Mackenzie, Study on edge cracking and texture evolution during 150 oC rolling of magnesium alloys: the effects of axial ratio and grain size, J. All. Comp., 510 (2012) 15-25.
DOI: 10.1016/j.jallcom.2011.08.093
Google Scholar
[35]
M. Pekguleryuz, M. Avedesian, Magnesium alloying-Some metallurgical aspects, Magnesium alloys and their applications, (1992) 213-220.
Google Scholar
[36]
S.N. Murty, N. Nayan, S. Sharma, K.S. Kumar, P. Sinha, Development of ultrafine-grained magnesium alloy AZ31 by multi-pass warm rolling, Met. Sci. Heat Treat., 53 (2011) 270-273.
DOI: 10.1007/s11041-011-9381-3
Google Scholar
[37]
J. Yan, Y. Sun, F. Xue, S. Xue, W. Tao, Microstructure and mechanical properties in cast magnesium–neodymium binary alloys, Mater. Sci. Eng., A 476 (2008) 366-371.
DOI: 10.1016/j.msea.2007.05.058
Google Scholar
[38]
Z. Yazhong, P. Fusheng, P. Jian, W. Weiqing, L. Suqin, Effect of neodymium on the as-extruded ZK20 magnesium alloy, J. Rare Earths, 28 (2010) 631-635.
DOI: 10.1016/s1002-0721(09)60169-1
Google Scholar
[39]
L. Mackenzie, M. Pekguleryuz, The influences of alloying additions and processing parameters on the rolling microstructures and textures of magnesium alloys, Mater. Sci. Eng., A 480 (2008) 189-197.
DOI: 10.1016/j.msea.2007.07.003
Google Scholar
[40]
Z.B. Sajuri, Y. Miyashita, Y. Hosokai, Y. Mutoh, Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys, Int. J. Mech. Sci., 48 (2006) 198-209.
DOI: 10.1016/j.ijmecsci.2005.09.003
Google Scholar
[41]
C. Bettles, M. Barnett, Advances in wrought magnesium alloys, in, Cambridge: Woodhead Publishing, (2012).
Google Scholar
[42]
J. Du, J. Yang, M. Kuwabara, W. Li, J. Peng, Effects of carbon and/or alkaline earth elements on grain refinement and tensile strength of AZ31 alloy, Mater. Trans., 49 (2008) 2303-2309.
DOI: 10.2320/matertrans.mra2008146
Google Scholar
[43]
N.J. Park, C.W. Ha, Effect of initial texture on the development of microstructure and mechanical properties in AZ31 magnesium alloy after rolling at 300 C, in: Applied Mechanics and Materials, Trans. Tech. Publ., 217 (2012) 354-357.
DOI: 10.4028/www.scientific.net/amm.217-219.354
Google Scholar
[44]
A.G. Beer, M.R. Barnett, The influence of twinning on the hot working flow stress and microstructural evolution of magnesium alloy AZ31, in: Mater. Sci. Forum, Trans. Tech. Publ., 488 (2005) 611-614.
DOI: 10.4028/www.scientific.net/msf.488-489.611
Google Scholar
[45]
N. Stanford, M. Barnett, The origin of rare earth texture development in extruded Mg-based alloys and its effect on tensile ductility, Mater. Sci. Eng., A 496 (2008) 399-408.
DOI: 10.1016/j.msea.2008.05.045
Google Scholar
[46]
J. Robson, D. Henry, B. Davis, Particle effects on recrystallization in magnesium–manganese alloys: Particle-stimulated nucleation, Acta Mater., 57 (2009) 2739-2747.
DOI: 10.1016/j.actamat.2009.02.032
Google Scholar
[47]
K. Yu, S.-T. Rui, X.-Y. Wang, R.-C. Wang, W.-X. Li, Texture evolution of extruded AZ31 magnesium alloy sheets, Trans. Nonferr. Met. Soc. China, 19 (2009) 511-516.
DOI: 10.1016/s1003-6326(08)60304-0
Google Scholar
[48]
T. Al-Samman, Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy, Acta Mater., 57 (2009) 2229-2242.
DOI: 10.1016/j.actamat.2009.01.031
Google Scholar
[49]
D. Liu, Z. Liu, E. Wang, Effect of rolling reduction on microstructure, texture, mechanical properties and mechanical anisotropy of AZ31 magnesium alloys, Mater. Sci. Eng., A 612 (2014) 208-213.
DOI: 10.1016/j.msea.2014.06.034
Google Scholar
[50]
M. Kohzu, K. Kii, Y. Nagata, H. Nishio, K. Higashi, H. Inoue, Texture randomization of AZ31 magnesium alloy sheets for improving the cold formability by a combination of rolling and high-temperature annealing, Mater. Trans., 51 (2010) 749-755.
DOI: 10.2320/matertrans.l-m2010802
Google Scholar